满分5 > 初中数学试题 >

如图,反比例函数的图象与直线y=kx+b相交于点A、B,点A的坐标为(2,4),...

如图,反比例函数的图象与直线y=kx+b相交于点AB,点A的坐标为(24),直线ABy轴于点C(02),交x轴于点E.

(1)求反比例函数与一次函数的表达式;

(2)求点EB的坐标;

(3)过点BBDy轴,垂足为D,连接ADx轴于点F,求的值.

 

(1)反比例函数表达式为,一次函数表达式为;(2)E (-2,0) ,B(-4,-2);(3) 【解析】 (1)采用待定系数法求反比例函数和一次函数表达式; (2)求直线AC与x轴的交点,与反比例函数的交点即可得到E、B的坐标; (3)由EF∥BD得到△AEF∽△ABD,利用坐标系中两点间的距离公式求出AE,AB得到相似比,利用面积比等于相似比的平方即可得到答案. 【解析】 (1)∵反比例函数经过A (2,4), ∴,解得. ∴反比例函数表达式为 ∵直线y=kx+b经过A (2,4),C(0,2) ∴,解得, ∴一次函数表达式为 (2)∵直线与x轴交于E点,当y=0时,,即, ∴E点坐标为(-2,0) 将一次函数与反比例函数联立得, ,解得或 ∵A点坐标为(2,4) ∴B点坐标为(-4,-2) (3)∵点A的坐标为(2,4),E点坐标为(-2,0),B点坐标为(-4,-2) ∴ ∴ ∵EF⊥y轴,BD⊥y轴 ∴EF∥BD ∴△AEF∽△ABD ∴
复制答案
考点分析:
相关试题推荐

边长为2的正方形ABCD在平面直角坐标系中如图放置,已知点A的横坐标为1,作直线OC与边AD交于点E.

(1)求∠OCB的正弦值和余弦值;

(2)OD两点作直线,记该直线与直线OC的夹角为 ,试求tan的值.

 

查看答案

某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A处测得山顶B的仰角为45°,他们从A处沿着坡度为i=1 : 的斜坡前进1000 m到达D处,在D处测得山顶B的仰角为58°,若点A处的海拔为12米,求该座山顶点B处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60sin 58°≈0. 85cos 58°≈0.53≈1. 732)

 

查看答案

如图,△ABC是等边三角形,DE分别是BCCB延长线上的点,且,连接ADAEBMCN分别是△ABE和△ACD的高线,垂足分别为MN BGCH分别是∠ABE和∠ACD的平分线,分别交AEAD于点GH.

证明:(1)ABE∽△DCA;

(2)sinMBG=sinNCH.

 

查看答案

公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的赵爽弦图如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,其中直角三角形中较大的锐角度数为a.若大正方形的面积为144,小正方形的面积是36,求sina-cosa的值.

 

查看答案

已知在△ABC中,∠C= 90°,∠A、∠B、∠C所对的边分别为abca=c=,解这个直角三角形。

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.