81的算术平方根是( )
A. 9 B. ±9 C. 3 D. ±3
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,且OC2=OA·OB.
(1)证明:tan∠BAC· tan∠ABC=1;
(2)若点C的坐标为(0,2),tan∠OCB=2,
①求该抛物线的表达式;
②若点D是该抛物线上的一点,且位于直线BC上方,当四边形ABDC的面积最大时,求点D的坐标.
如图,反比例函数的图象与直线y=kx+b相交于点A、B,点A的坐标为(2,4),直线AB交y轴于点C(0,2),交x轴于点E.
(1)求反比例函数与一次函数的表达式;
(2)求点E、B的坐标;
(3)过点B作BD⊥y轴,垂足为D,连接AD交x轴于点F,求的值.
边长为2的正方形ABCD在平面直角坐标系中如图放置,已知点A的横坐标为1,作直线OC与边AD交于点E.
(1)求∠OCB的正弦值和余弦值;
(2)过O、D两点作直线,记该直线与直线OC的夹角为 ,试求tan的值.
某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A处测得山顶B的仰角为45°,他们从A处沿着坡度为i=1 : 的斜坡前进1000 m到达D处,在D处测得山顶B的仰角为58°,若点A处的海拔为12米,求该座山顶点B处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60,sin 58°≈0. 85,cos 58°≈0.53,≈1. 732)
如图,△ABC是等边三角形,D、E分别是BC和CB延长线上的点,且,连接AD、AE,BM、CN分别是△ABE和△ACD的高线,垂足分别为M、N, BG、CH分别是∠ABE和∠ACD的平分线,分别交AE、AD于点G、H.
证明:(1)△ABE∽△DCA;
(2)sin∠MBG=sin∠NCH.