如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标。
如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距______千米;
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是______小时;
(3)B再次出发后______小时与A相遇;
(4)求出A行走的路程S与时间t的函数关系式(写出过程);
(5)若B的自行车不发生故障,保持出发时的速度前进,几小时与A相遇?在图中表示出这个相遇点C.
根据题意列方程组:(只列方程组)
两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?
已知函数y=(2m+1)x+m-3.
(1)若函数图象经过原点,求m的值
(2)若函数的图象平行于直线y=3x-3,求m的值
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
已知一次函数y=kx+b的图象经过点(0,−1),且与正比例函数y=x的图象相交于点(2,a).
求:(1)a的值;
(2)一次函数y=kx+b的解析式;
(3)在图中画出这两个函数图象,并求这两个函数图象与x轴所围成的三角形面积.
先化简,再求值(a+b)2+(a-b)(2a+b)-3a2,其中:a=,b=