如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:
(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.
(1)甲种商品每件进价为 元,每件乙种商品利润率为 .
(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?
(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:
打折前一次性购物总金额 | 优惠措施 |
少于等于450元 | 不优惠 |
超过450元,但不超过600元 | 按售价打九折 |
超过600元 | 其中600元部分八点二折优惠,超过600元的部分打三折优惠 |
按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?
定义☆运算,观察下列运算:
(+5)☆(+14) =+19 (-13)☆(-7) =+20,
(-2)☆(+15) =-17 (+18)☆(-7) =-25,
0☆(-19) =+19 (+13)☆0 =+13.
(1)请你认真思考上述运算,归纳☆运算的法则:
两数进行☆运算时,同号_________,异号_________________.
特别地,0和任何数进行☆运算,或任何数和0进行☆运算,_____.
(2)计算:(+17) ☆[0 ☆(-16)] = ____.
(3)若2×(2☆a)-1=3a,求a的值.
小王家新买的一套住房的建筑平面图如图所示(单位:米).
(1)这套住房的建筑总面积是多少平方米?(用含a,b,c的式子表示)
(2)若a=10,b=4,c=7,试求出小王家这套住房的具体面积.
(3)地面装修要铺设瓷砖,公司报价是:客厅地面每平方米240元,卧室地面每平方米220元,厨房地面每平方米180元,卫生间地面每平方米150元.在(2)的条件下,小王一共要花多少钱?
(4)这套住房的售价为每平方米15000元,购房时首付款为房价的40%,余款向银行申请贷款,在(2)的条件下,小王家购买这套住房时向银行申请贷款的金额是多少元?
一队学生从学校出发去部队军训,行进的速度是 5km/h,走了 4.5km 后, 一名通讯员按原路返回学校报信,然后追赶队伍,通讯员的速度是 14km/h,他在距部队6km 处追上了队伍,问学校到部队的路程是多少千米.(报信时间忽略不计).
一个由一些相同的正方体搭成的几何体,如图是它的俯视图和左视图.
(1)这个几何体可以是图 A、B、C 中的 ;
(2)这个几何体最多有 块相同的正方体搭成,并在网格中画出正方体最多时的主视图.