如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.
(1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由.
(2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.
(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明,直接写出结果)
若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.
(1)请你写一个最小的三位“丰利数”是 ,并判断20 “丰利数”.(填是或不是);
(2)已知S=x2+y2+2x﹣6y+k(x、y是整数,k是常数),要使S为“丰利数”,试求出符合条件的一个k值(10≤k<200),并说明理由.
如图,∠BAD=∠CAE=90o,AB=AD,AE=AC.
(1)若AC=10,求四边形ABCD的面积;
(2)求证:AC平分∠ECF;
已知,如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高。求证:AD垂直平分EF。
先化简:,然后在-1、0、1、2、3中选一个的值代入求值.
(1)分解因式:(p+4)(p-1)-3p; (2)化简: