满分5 > 初中数学试题 >

某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采...

某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=20x1+15000x1≤20x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=10x2+13000x2≤20x2为整数).

1)经商家与厂家协商,采购空调的数量不少于冰箱数量的 ,且空调采购单价不低于1200元,问该商家共有几种进货方案?

2)该商家分别以1760/台和1700/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

 

(1)5 (2)采购空调15台时,获得总利润最大,最大利润值为10650元. 【解析】 试题(1)由题意可设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,根据题中的不等量关系可列出关于x的不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案; (2)按常规可设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式,整理成顶点式形式,然后根据二次函数的性质求出最大值即可. 试题解析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台, 由题意得,, 解不等式①得,x≥11, 解不等式②得,x≤15, 所以,不等式组的解集是11≤x≤15, ∵x为正整数, ∴x可取的值为11、12、13、14、15, 所以,该商家共有5种进货方案; (2)设总利润为W元, y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100, 则W=(1760﹣y1)x1+(1700﹣y2)x2, =1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x), =1760x+20x2﹣1500x+10x2﹣800x+12000, =30x2﹣540x+12000, =30(x﹣9)2+9570, 当x>9时,W随x的增大而增大, ∵11≤x≤15, ∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元), 答:采购空调15台时,获得总利润最大,最大利润值为10650元.
复制答案
考点分析:
相关试题推荐

如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CDABD,点EAB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG·BF.

 

查看答案

如图,已知AB⊙O的直径,P⊙O外一点,且OP∥BC∠P=∠BAC

(1)求证:PA⊙O 的切线;

(2)若OB=5OP=,求AC的长.

 

查看答案

如图,已知直线x轴、y轴分别交于点AB,与双曲线分别交于点CD,且点C的坐标为.

1)分别求出直线、双曲线的函数表达式.

2)求出点D的坐标.

3)利用图象直接写出:当x在什么范围内取值时

 

查看答案

在某班讲故事比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择数字了.

1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.

2)有的同学认为,如果甲先翻奖牌,那么他得到篮球的概率会大些,这种说法正确吗?请说明理由.

 

查看答案

如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.