满分5 > 初中数学试题 >

如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD...

如图,矩形的边OAx轴上,边OCy轴上,点B的坐标为(108),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(68),抛物线y=ax2+bx+c经过OAE三点.

1)求此抛物线的解析式;

2)求AD的长;

3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.

 

(1)y=;(2)AD=5;(3)(5,) 【解析】 试题(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标. 试题解析:(1)∵四边形ABCD是矩形,B(10,8), ∴A(10,0), 又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得, ∴抛物线的解析式为y=﹣x2+x; (2)由题意可知:AD=DE,BE=10﹣6=4,AB=8, 设AD=x,则ED=x,BD=AB﹣AD=8﹣x, 在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5, ∴AD=5; (3)∵y=﹣x2+x, ∴其对称轴为x=5, ∵A、O两点关于对称轴对称, ∴PA=PO, 当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小, 如图,连接OD交对称轴于点P,则该点即为满足条件的点P, 由(2)可知D点的坐标为(10,5), 设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=, ∴直线OD解析式为y=x, 令x=5,可得y=, ∴P点坐标为(5,).
复制答案
考点分析:
相关试题推荐

(1)问题

如图1,在四边形ABCD中,点PAB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.

(2)探究

如图2,在四边形ABCD中,点PAB上一点,∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.

(3)应用

请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.

 

查看答案

某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=20x1+15000x1≤20x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=10x2+13000x2≤20x2为整数).

1)经商家与厂家协商,采购空调的数量不少于冰箱数量的 ,且空调采购单价不低于1200元,问该商家共有几种进货方案?

2)该商家分别以1760/台和1700/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

 

查看答案

如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CDABD,点EAB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG·BF.

 

查看答案

如图,已知AB⊙O的直径,P⊙O外一点,且OP∥BC∠P=∠BAC

(1)求证:PA⊙O 的切线;

(2)若OB=5OP=,求AC的长.

 

查看答案

如图,已知直线x轴、y轴分别交于点AB,与双曲线分别交于点CD,且点C的坐标为.

1)分别求出直线、双曲线的函数表达式.

2)求出点D的坐标.

3)利用图象直接写出:当x在什么范围内取值时

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.