方程x2-3x+=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.
(1)求此抛物线的解析式;
(2)求AD的长;
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.
(1)问题
如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.
(2)探究
如图2,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用
请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.
某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的 ,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.
如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG·BF.
如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC .
(1)求证:PA为⊙O 的切线;
(2)若OB=5,OP=,求AC的长.