下列各式中,正确的是( )
A. B. C. D.
已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )
A. B. C. D.
在实数:3.141 59, ,1.010 010 001,4.21,π, 中,无理数有( )
A.0个 B.1个 C.2个 D.3个
已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.
(1)求证:△BCE≌△DCF;
(2)求CF的长;
(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.
已知,正方形ABCD,G是BC边上ー点,连接AG,分别以AG和BG为直角边作等腰Rt△AGF和等腰Rt△GBE,使∠GBE=∠AGF=90°,点E,F在BC下方,连接EF.
求证:①∠BAG=∠BGF,
②CG=EF:
有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.
(1)请用列表或画树状图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;
(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在直线y=﹣x上的概率.