如图1,正方形ABCD和正方形AEFG,连接DG,BE.
(1)发现:当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是 ;②直线DG与直线BE之间的位置关系是 .
(2)探究:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG⊥BE.
(3)应用:在(2)情况下,连结GE(点E在AB上方),若GE∥AB,且AB=,AE=1,则线段DG是多少?(直接写出结论)
如图,抛物线y=ax2+bx向上平移2个单位之后,正好与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求平移后抛物线的表达式;
(2)点Q是直线AC上方的抛物线上一点,过点Q作QE垂直于x轴,若以点B、Q、E为顶点的角形与△AOC相似,请求出Q点的坐标.
小明和小亮用6张背面完全相同的纸牌进行摸牌游戏,游戏规则如下:将牌面分别标有数字1、3、6的三张纸牌给小明,将牌面分别标有数字2、4、5的三张纸牌给小亮,小明小亮分别将纸牌背面朝上,从各自的三张纸牌中随机抽出一张,并将抽出的两张卡片上的数字相加,如果和为偶数,则小明获胜;如果和为奇数,则小亮获胜.
(1)小明抽到标有数字6的纸牌的概率为 ;
(2)请用树状图或列表的方法求小亮获胜的概率.
已知A(-4,2)、B(n,-4)两点是一次函数y=kx+b和反比例函数图象的两个交点.
(1)求一次函数和反比例函数的解析式.
(2)求的面积.
(3)观察图象,直接写出不等式的解集.
如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)
如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的长.