已知抛物线上三点A(-5,),B(1,),C(12,),则,,满足的关系式为( )
A.<< B.<< C.<< D.<<
将二次函数y=x2的图象向左平移1个单位,则平移后的二次函数的解析式为( )
A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)2
抛物线y=x2-2x-3与y轴的交点的纵坐标为( ).
A.-3 B.-1 C.1 D.3
已知2是关于x的方程x2﹣2ax+4=0的一个解,则a的值是( )
A.1 B.2 C.3 D.4
阅读
(1)阅读理【解析】
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是________;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕.
(1)求证:△FGC≌△EBC;
(2)试判断△CEF的形状,并证明你的结论;
(3)若AB=8,AD=4,求四边形ECGF的面积.