下列式子为最简二次根式的是( )
A. B. C. D.
如图,抛物线与轴相交于,与轴相交于点,过点C作轴,交抛物线于点.
(1)求梯形ACDB的面积;
(2)若梯形ACDB的对角线交于点,求点的坐标,并求经过三点的抛物线的解析式; .
(3)点是射线上一点,且与相似,求符合条件的点坐标.
商城某种商品平均每天可销售20件,每件盈利30元,为庆十一,决定进行促销活动,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设该商品每件降价x元,请解答下列问题:
(1)用含x的代数式表示:①降价后每售一件盈利_________元;②降价后平均每天售出_________件;
(2)若商城在促销活动中,计划每天盈利750元,并且使消费者得到更多实惠,每件商品应降价多少元?(列方程解答)
(3)在此次促销活动中,商城若要获得最大盈利,每件商品应降价多少元?获得最大盈利多少元?
在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.
(1)用含t的代数式表示Rt△CPQ的面积S;
(2)当t=3秒时,P、Q两点之间的距离是多少?
(3)当t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?
如图,一次函数的图象与反比例函数(为常数,且)的图象交于两点.
(1)求反比例函数的表达式;
(2)在轴上找一点,使的值最小,求满足条件的点的坐标;
(3)在(2)的条件下,求的面积.
一块材料的形状是锐角三角形ABC,边BC=120mm,高4D=80mm, .把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)求证:;
(2)求这个正方形零件的边长;