下列四个三角形中,与图中的三角形相似的是( )
A. B. C. D.
下列图形中,是中心对称图形的是( )
A. B. C. D.
用配方法解方程时,原方程应变形为( )
A. B. C. D.
如图,已知抛物线y=﹣+bx+c的图象经过点A(﹣1,0)和点C(0,2),点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式.
(2)已知点F(0,),当点P在x轴正半轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.
如图(1),将正方形ABCD与正方形GECF的顶点C重合,当正方形GECF的顶点G在正方形ABCD的对角线AC上时,的值为______.
如图(2),将正方形CEGF绕点C顺时针方向旋转a角(0°<a<45°),猜测AG与BE之间的数量关系,并说明理由.
如图(3),将正方形CEGF绕点C顺时针方向旋转a角(45°<a<90°)使得B、E、G三点在一条直线上,此时tan∠GAC=,AG=6,求△BCE的面积.
某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.
(1)求y与x之间的函数关系式.
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实7000千克.
(3)当增种果树多少棵时,果园的总产量w(千克)最大?此时每棵果树的产量是多少?