满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,...

如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.

(1)求抛物线的解析式;

(2)若点M为第三象限内抛物线上一动点,点M的横坐标为mAMB的面积为S,求S关于m的函数关系式,并求出S的最大值;

(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点PQBO为顶点的四边形为平行四边形(要求PQOB),直接写出相应的点Q的坐标.

 

(1)y=x2+x-4;(2)当m=-2时,S有最大值,S最大=4;(3)满足题意的Q点的坐标有三个,分别是(-2+2,2-2),(-2-2,2+2),(-4,4). 【解析】 (1)已知抛物线与x轴的两个交点的横坐标,一般选用两点式,利用待定系数法求解即可; (2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解; (3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解. (1)设抛物线的解析式为y=a(x+4)(x-2),把B(0,-4)代入得, -4=a×(0+4)(0-2),解得a=, ∴抛物线的解析式为:y=(x+4)(x-2),即y=x2+x-4; (2)过点M作MD⊥x轴于点D,设M点的坐标为(m,n), 则AD=m+4,MD=-n,n=m2+m-4, ∴S=S△AMD+S梯形DMBO-S△ABO == -2n-2m-8=-2×(m2+m-4)-2m-8=-m2-4m =-(m+2)2+4(-4<m<0); ∴S最大值=4.(3)设P(x,x2+x-4). ①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB, ∴Q的横坐标等于P的横坐标, 又∵直线的解析式为y=-x,则Q(x,-x).由PQ=OB, 得|-x-(x2+x-4)|=4,解得x=0,-4,-2±2.x=0不合题意,舍去. 由此可得Q(-4,4)或(-2+2,2-2)或(-2-2,2+2); ②如图2,当BO为对角线时,知A与P应该重合,OP=4. 四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4). 故满足题意的Q点的坐标有四个,分别是 (-4,4),(4,-4),(-2+2,2-2),(-2-2,2+2).
复制答案
考点分析:
相关试题推荐

如图,在中,,点边上,经过点和点且与边相交于点

(1)求证:的切线;

(2),求的半径.

 

查看答案

石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.

(1)设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)

(2)每件童装降价多少元时,平均每天赢利1200元.

(3)要想平均每天赢利2000元,可能吗?请说明理由.

 

查看答案

已知关于x的方程x2﹣(2m1x+m2+10有两个不相等实数根x1x2

1)求实数m的取值范围;

2)若x12+x22x1x2+3时,求实数m的值.

 

查看答案

如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).

(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1

(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2

(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

 

查看答案

已知抛物线经过点A30),B﹣10).

1)求抛物线的解析式;

2)求抛物线的顶点坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.