已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且
分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.
(1)写出旋转角的度数;
(2)求证:∠A1AC=∠C1.
小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.
他们在一次实验中共掷骰子次,试验的结果如下:
朝上的点数 | ||||||
出现的次数 |
|
①填空:此次实验中“点朝上”的频率为________;
②小红说:“根据实验,出现点朝上的概率最大.”她的说法正确吗?为什么?
小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.
如图,点A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°.
(1)求∠BOC的度数;
(2)求证:四边形AOBC是菱形.
用适当的方法解下列方程:
(1)x2﹣6x﹣16=0
(2)(3x﹣2)2=(x+4)2