盒中有若干枚黑球和白球,这些球除颜色外无其他差别,现让学生进行摸球试验:每次摸出一个球,记下颜色后放回摇匀,重复进行这样的试验得到以下数据:
摸棋的次数n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次数m | 38 | 79 | 121 | 196 | 322 | 398 |
摸到黑棋的频率(精确到0.001) | 0.380 | 0.395 | 0.403 | 0.392 | 0.403 | 0.398 |
(1)根据表中数据估计,从盒中摸出一个球是白球的概率是_____(精确到0.01);
(2)若盒中黑球与白球共有5枚,某同学连续不放回地摸出两个球,用树状图或表格计算这两个球颜色不同的概率.
一块材料的形状是锐角三角形ABC,边BC=120mm,高4D=80mm, .把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)求证:;
(2)求这个正方形零件的边长;
如图,已知在正方形ABCD中、点E是BC边上一点,F为AB延长线上一点,且BE=BF,连接AE、EF、CF.
(1)若∠BAE=18°,求∠EFC的度数;
(2)求证:AE⊥CF.
如图,周长为20的菱形OABC在平面直角坐标系中的位置如图所示,点B的坐标是(6,0).
(1)求点C的坐标;
(2)若反比例函数的图象经过点C,求k的值.
如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体:
(1)图中有_____个小正方体;
(2)请在图1右侧方格中分别画出几何体的主视图和左视图.
如图,在等腰△ABC中,AD是顶角∠BAC的角平分线,BE是腰AC边上的高,垂足为点E.求证:△ACD∽△BCE.