矩形具有而菱形不一定具有的性质是( )
A. 对角线互相垂直 B. 对角线相等 C. 对角线互相平分 D. 邻边相等
如图,在矩形中,,,动点P以的速度从A点出发,沿向C点移动,同时动点Q以的速度从点C出发,沿向点B移动,设P、Q两点移动的时间为t秒.
(1)t为多少时,以P、Q、C为顶点的三角形与相似?
(2)在P、Q两点移动过程中,四边形与的面积能否相等?若能,求出此时t的值;若不能,请说明理由.
如图,一次函数y=kx+b的图象与反比例函数的图象相交于A(m,4)、B(2,﹣6)两点,过A作AC⊥x轴交于点C,连接OA.
(1)分别求出一次函数与反比例函数的表达式;
(2)若直线AB上有一点M,连接MC,且满足S△AMC=3S△AOC,求点M的坐标.
如图,笑笑和爸爸想要测量直立在地面上的建筑物OP与广告牌AB的高度.首先,笑笑站在离广告牌B处4米的D处看到广告牌AB的顶端A、建筑物OP的顶端O一条直线上;此时,在阳光下,爸爸站在N处,他的影长NE=2.1米,同一时刻,测得建筑物OP的影长为PG=28米,已知建筑物OP与广告牌AB之间的水平距离为11米,笑笑的眼睛到地面的距离CD=1.5米,爸爸的身高MN=1.8米.
(1)请你画出表示建筑物OP在阳光下的影子PG;
(2)求:①建筑物OP的高度;
②广告牌AB的高度.
盒中有若干枚黑球和白球,这些球除颜色外无其他差别,现让学生进行摸球试验:每次摸出一个球,记下颜色后放回摇匀,重复进行这样的试验得到以下数据:
摸棋的次数n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次数m | 38 | 79 | 121 | 196 | 322 | 398 |
摸到黑棋的频率(精确到0.001) | 0.380 | 0.395 | 0.403 | 0.392 | 0.403 | 0.398 |
(1)根据表中数据估计,从盒中摸出一个球是白球的概率是_____(精确到0.01);
(2)若盒中黑球与白球共有5枚,某同学连续不放回地摸出两个球,用树状图或表格计算这两个球颜色不同的概率.
一块材料的形状是锐角三角形ABC,边BC=120mm,高4D=80mm, .把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)求证:;
(2)求这个正方形零件的边长;