阅读材料,回答下列问题:
阿尔•花拉子米(约780~约850),著名阿拉伯数学家、天文学家、地理学家,是代数与算术的整理者,被誉为“代数之父”.他利用正方形图形巧妙解出了一元二次方程x2+2x﹣35=0的一个解.
将边长为x的正方形和边长为1的正方形,外加两个长方形,长为x,宽为1,拼合在一起面积就是x2+2×1+1×1,即x2+2x+1,而由原方程x2+2x﹣35=0变形得x2+2x+1=35+1,即右边边长为x+1的正方形面积为36.所以(x+1)2=36,则x=5.
(1)上述求解过程中所用的方法与下列哪种方法是一致的 .
A.直接开平方法 B.公式法
C.配方法 D.因式分解法
(2)所用的数学思想方法是 .
A.分类讨论思想 B.数形结合思想 C.转化思想
(3)运用上述方法构造出符合方程x2+4x﹣5=0的一个正根的正方形.
如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
3月5日是学雷锋日,也是中国青年志愿者服务日.今年3月5日,某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道(记为A)”“去敬老院服务(记为B)”“到社区文艺演出(记为C)”三项.
(1)八年级计划在3月5日这天随机完成“青年志愿者”活动中的一项,求八年级完成的恰好是“去敬老院服务”的概率;
(2)九年级计划在3月5日这天随机完成“青年志愿者”活动中的两项,请用列表或画树状图法求九年级完成的恰好是“打扫街道”和“去敬老院服务”的概率.
如图,AB、CD相交于点O,且AC∥BD.OA•BD=OB•AC成立吗?为什么?
用适当的方法解方程.
(1)x(x﹣5)=x﹣5
(2)2x2﹣7x+6=0
如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.