已知线段AB=10cm,点C在直线AB上, 且AC=2cm,则线段BC的长为( )
A.12cm B.8cm C.12cm或8cm D.以上均不对
如图,C 是线段AB上一点,AC=4,BC=6,点M、N分别是线段AC、BC的中点,则MN=( )
A.2 B.3 C.10 D.5
在习题课上,老师让同学们以课本一道习题“如图1,A,B,C,D四家工厂分别坐落在正方形城镇的四个角上.仓库E和Q分别位于AD和DC上,且ED=QC.证明两条直路BE=AQ且BE⊥AQ.”为背景开展数学探究.
(1)独立思考:将上题条件中的ED=QC去掉,将结论中的BE⊥AQ变为条件,其他条件不变,那么BE=AQ还成立吗?请写出答案并说明理由;
(2)合作交流:“祖冲之”小组的同学受此问题的启发提出:如图2,在正方形ABCD内有一点P,过点P作EF⊥GH,点E、F分别在正方形的对边AD、BC上,点G、H分别在正方形的对边AB、CD上,那么EF与GH相等吗?并说明理由.
(3)拓展应用:“杨辉”小组的同学受“祖冲之”小组的启发,想到了利用图2的结论解决以下问题:
如图3,将边长为10cm的正方形纸片ABCD折叠,使点A落在DC的中点E处,折痕为MN,点N在BC边上,点M在AD边上.请你画出折痕,则折痕MN的长是 ;线段DM的长是 .
如图,在△ABC中,AB=AC,AD为边BC上的中线,DE⊥AC于点E.
(1)请你写出图中所有与△CDE相似的三角形;
(2)若AB=10,BC=12,求EC的长.
如图是一幅长为90cm,宽为60cm的有关北京东奥会的长方形宣传画.
(1)为测量宣传画上吉祥物冰墩墩的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在吉祥物冰墩墩中的频率稳定在常数0.4附近,由此可估计宣传画上吉祥物冰墩墩的面积约为 cm2;
(2)若要为此宣传画配一个镜框制成一幅矩形挂画,要求镜框的四条边宽度相等.如果要使整个挂画的面积为7000cm2,那么镜框边的宽度应是多少厘米?
阅读材料,回答下列问题:
阿尔•花拉子米(约780~约850),著名阿拉伯数学家、天文学家、地理学家,是代数与算术的整理者,被誉为“代数之父”.他利用正方形图形巧妙解出了一元二次方程x2+2x﹣35=0的一个解.
将边长为x的正方形和边长为1的正方形,外加两个长方形,长为x,宽为1,拼合在一起面积就是x2+2×1+1×1,即x2+2x+1,而由原方程x2+2x﹣35=0变形得x2+2x+1=35+1,即右边边长为x+1的正方形面积为36.所以(x+1)2=36,则x=5.
(1)上述求解过程中所用的方法与下列哪种方法是一致的 .
A.直接开平方法 B.公式法
C.配方法 D.因式分解法
(2)所用的数学思想方法是 .
A.分类讨论思想 B.数形结合思想 C.转化思想
(3)运用上述方法构造出符合方程x2+4x﹣5=0的一个正根的正方形.