已知:甲、乙两车分别从相距300km的A,B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y与行驶时间x之间的函数图象.
(1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并标明自变量的取值范围;
(2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;
(3)它们在行驶过程中有几次相遇.并求出每次相遇的时间.
某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲 乙两种商品,分别抽七折和九折 共付款399元 两种商品原销售价之和为499元 甲 乙两种商品的进价分别为多少元 .
已知:如图,AC⊥BC,CD∥FG,∠1=∠2.求证:DE⊥AC.
某校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛(满分100分),如下表所示:
解答下列问题:
(1)请填写下表:
(2)请从以下两个不同的角度对三个班级的决赛成绩进行
①从平均数和众数相结合看(分析哪个班级成绩好);
②从平均数和中位数相结合看(分析哪个班级成绩好);
(3)如果在每个班级参加决赛的选手中选出3人参加总决赛,你认为哪个班级的实力更强一些,请简要说明理由.
在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)写出点B的坐标 ;
(3)将△ABC向右平移5个单位长度,向下平移2个单位长度,画出平移后的图形△A′B′C′;
(4)计算△A′B′C′的面积﹒
(5)在x轴上存在一点P,使PA+PC最小,直接写出点P的坐标.
计算:
(1)
(2) .