计算(+5)+(﹣8)的结果是( )
A.13 B.﹣13 C.3 D.﹣3
如果温度上升6℃记作“+6℃“;那么温度下降8℃记作( )
A.+8℃ B.﹣8℃ C.+14℃ D.﹣2℃
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)
(1)求该二次函数的解析式;
(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?
已知,在△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F.
(1)如图①,求证:AE=AF;
(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′,BF′.
①若BF′=6,求CE′的长;
②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.
如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
(1)求证:BC为⊙O的切线;
(2)若AB=4,AD=1,求线段CE的长.
已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.
(1)求证:△ABC∽△DAE;
(2)若AB=8,AD=6,AE=4,求BC的长.