阅读下面的情景对话,然后解答问题:
老师:我们定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?__________.(填“是”或“否”)
问题(2):已知RtΔABC中,两边长分别是,10,,若这个三角形是奇异三角形,则第三边是__________.
问题(3):如图,以AB为斜边分别在AB的两侧作直角三角形,且AD=BD,若四边形ADBC内存在点E,使得AE=AD,CB=CE.试说明:△ACE是奇异三角形.
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为,所以可用、来表示的小数部分.请解答下列问题:
(1)的整数部分是__________,小数部分是__________.
(2)如果的整数部分为,小数部分为,求的值.
(3)已知,其中是整数,且.则求的平方根的值.
作出函数的图象,并利用图象回答问题:
(1)写出图象与轴的交点A的坐标________,与轴的交点B的坐标________.
(2)当时,的取值范围是______________.
(3)有一点C的坐标是(3,4),顺次连接点A、B、C得到△ABC,三角形ABC的面积为________.
(4)点C关于轴对称的点D的坐标
(5)连接B,D两点,求直线BD的函数关系式.
已知,为实数,且满足
(1)求,的值:
(2)若,为△ABC的两边,第三边为,求△ABC的面积.
计算
(1)
(2)
(3)
(4)
如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上,若PA=5,AB=8,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程是__________.