下列图案是轴对称图形有( )
A.1个 B.2个 C.3个 D.4个
如图,平面直角坐标系中,一次函数的图像与轴交于点A,与轴交于点B,点C是直线AB上一点,它的坐标为(,2),经过点C作直线CD∥轴交轴于点D.
(1)求点C的坐标及线段AB的长;
(2)已知点P是直线CD上一点.
①若△POC的面积是4,求点P的坐标;
②若△POC是直角三角形,请直接写出所有满足条件的点P的坐标.
运城的桃子今年获得了大丰收,现A,B两个水果合作社要向甲,乙两个市场运送桃子,已知A可调出110吨,B可调出90吨,甲地需要80吨,乙地需要120吨,两地到甲乙市场的路程和费用如图:
| 路程(km) | |
| A地 | B地 |
甲农贸市场 | 15 | 20 |
乙农贸市场 | 22 | 25 |
(1)设A地运往甲市场的桃子吨(0≤≤80),则A地运往乙市场的桃子有__________吨,B地运往甲市场的桃子有___________吨,B地运往乙市场的桃子有__________吨.
(2)若每吨桃子每千米需要运费12元,求总运费(元)关于(吨)的函数关系式;
(3)当A地给甲农贸市场运多少吨桃子时,总运费最省?最省的总运费是多少?
阅读下面的情景对话,然后解答问题:
老师:我们定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?__________.(填“是”或“否”)
问题(2):已知RtΔABC中,两边长分别是,10,,若这个三角形是奇异三角形,则第三边是__________.
问题(3):如图,以AB为斜边分别在AB的两侧作直角三角形,且AD=BD,若四边形ADBC内存在点E,使得AE=AD,CB=CE.试说明:△ACE是奇异三角形.
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为,所以可用、来表示的小数部分.请解答下列问题:
(1)的整数部分是__________,小数部分是__________.
(2)如果的整数部分为,小数部分为,求的值.
(3)已知,其中是整数,且.则求的平方根的值.
作出函数的图象,并利用图象回答问题:
(1)写出图象与轴的交点A的坐标________,与轴的交点B的坐标________.
(2)当时,的取值范围是______________.
(3)有一点C的坐标是(3,4),顺次连接点A、B、C得到△ABC,三角形ABC的面积为________.
(4)点C关于轴对称的点D的坐标
(5)连接B,D两点,求直线BD的函数关系式.