某校食堂每天中午为学生提供A,B,C三种套餐,小张从中随机选一种,恰好选中A套餐的概率为( )
A. B. C.1 D.
已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是 ( )
A. 点P在⊙O上 B. 点P在⊙O内 C. 点P在⊙O外 D. 无法判断
如图,将图形用放大镜放大,所用的图形改变是( )
A.平移 B.轴对称 C.旋转 D.相似
如图,抛物线y=(x+2)2+m与x轴交于A,B两点,与y轴交于点C.点D在抛物线上,且与点C关于抛物线的对称轴对称,抛物线的顶点为M,点B的坐标为(﹣1,0).
(1)求抛物线的解析式及A,C,D的坐标;
(2)判断△ABM的形状,并证明你的结论;
(3)若点P是直线BD上一个动点,是否存在以P,C,D为顶点的三角形与△ABD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由
如图,在△PAB中,M.N是AB上两点,△PMN是等边三角形,∠APM=∠B.
(1)求证:∠A=∠BPN;
(2)求证:MN2=AM·BN;
(3)若AP=,AM=1,求线段MN,PB的长.
某公司在甲乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x(单位:辆)之间满足y=﹣x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润,若该公司在甲乙两地共销售30辆该品牌的汽车,甲乙两地总的销售利润为W万元,其中在甲地销售x辆.
(1)求W与x的函数关系式;
(2)甲乙两地各销售多少辆车时W最大?W的最大值是多少?
(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?