学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.
(1)购买一件A道具和一件B道具各需要多少元?
(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.
①请问道具A最多购买多少件?
②若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?
观察下列等式:
等式1: ;等式2: ;等式3: ;
(1)猜想验证:根据观察所发现的特点,猜想第4个等式为 ,第9个等式为 ,并通过计算验证两式结果的准确性;
(2)归纳证明:由以上观察探究,归纳猜想:用含n的式子表示第n个等式所反映的运算规律为 ,证明猜想的准确性.
已知a+3和2a﹣15是某正数的两个平方根,b的立方根是﹣2,c算术平方根是其本身,求2a+b﹣3c的值.
化简求值:(x+2y)(2y﹣x)﹣(x+y)2,其中x=,y=﹣2.
解不等式(组):
(1)(并在数轴上表示它的解集)
(2)
关于x的方程4x﹣3=k+x的解是非负数,求k的取值范围.