满分5 > 初中数学试题 >

如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上...

如图1,在RtABC中,∠A90°,ABAC,点DE分别在边ABAC上,ADAE,连接DC,点MPN分别为DEDCBC的中点.

1)观察猜想

1中,线段PMPN的数量关系是     ,位置关系是     

2)探究证明

把△ADE绕点A逆时针方向旋转到图2的位置,连接MNBDCE,判断△PMN的形状,并说明理由;

3)拓展延伸

把△ADE绕点A在平面内自由旋转,若AD4AB10,请直接写出△PMN面积的最大值.

 

(1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3). 【解析】 (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论; (2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论; (3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论. 方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可. 【解析】 (1)∵点P,N是BC,CD的中点, ∴PN∥BD,PN=BD, ∵点P,M是CD,DE的中点, ∴PM∥CE,PM=CE, ∵AB=AC,AD=AE, ∴BD=CE, ∴PM=PN, ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA, ∵∠BAC=90°, ∴∠ADC+∠ACD=90°, ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°, ∴PM⊥PN, 故答案为:PM=PN,PM⊥PN, (2)由旋转知,∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD=CE, 同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE, ∴PM=PN, ∴△PMN是等腰三角形, 同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE, 同(1)的方法得,PN∥BD, ∴∠PNC=∠DBC, ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC, ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC, ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°, ∴△PMN是等腰直角三角形, (3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形, ∴MN最大时,△PMN的面积最大, ∴DE∥BC且DE在顶点A上面, ∴MN最大=AM+AN, 连接AM,AN, 在△ADE中,AD=AE=4,∠DAE=90°, ∴AM=2, 在Rt△ABC中,AB=AC=10,AN=5, ∴MN最大=2+5=7, ∴S△PMN最大=PM2=×MN2=×(7)2=. 方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD, ∴PM最大时,△PMN面积最大, ∴点D在BA的延长线上, ∴BD=AB+AD=14, ∴PM=7, ∴S△PMN最大=PM2=×72=
复制答案
考点分析:
相关试题推荐

某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.

1)该商品的售价和进价分别是多少元?

2)设每天的销售利润为w元,每件商品涨价x元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?

3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.

 

查看答案

如图,AC的直径,BC于点CAB于点DBC的中点为E,连接DE.

1)求证:

2)连接E0于点F填空:

①当__________时,以DECO为顶点的四边形是正方形;

②当______________时,以ADEO为顶点的四边形是平行四边形

 

查看答案

已知二次函数y=ax2+bx的图象过点(6,0),(﹣2,8).

(1)求二次函数的关系式;

(2)写出它的对称轴和顶点坐标.

 

查看答案

如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点OAB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交ACAB于点E. F

(1)试判断直线BC与⊙O的位置关系,并说明理由;

(2)BD=2BF=2,求⊙O的半径.

 

查看答案

如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(24),请解答下列问题:

1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.

2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.