如图,在平面直角坐标系中,直线与x轴,y轴分别交于点A,点B,抛物线经过A,B与点.
(1)求抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.
①求的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?
②若点E是垂线段PD的三等分点,求点P的坐标.
如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.
(1)该商品的售价和进价分别是多少元?
(2)设每天的销售利润为w元,每件商品涨价x元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?
(3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.
如图,AC是的直径,BC切于点C,AB交于点D,BC的中点为E,连接DE.
(1)求证:
(2)连接E0交于点F填空:
①当__________时,以D,E,C,O为顶点的四边形是正方形;
②当______________时,以A,D,E,O为顶点的四边形是平行四边形
已知二次函数y=ax2+bx的图象过点(6,0),(﹣2,8).
(1)求二次函数的关系式;
(2)写出它的对称轴和顶点坐标.
如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2,BF=2,求⊙O的半径.