满分5 > 初中数学试题 >

如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE...

如图,在ABCADE中,∠BAC=∠DAE90°ABACADAE,点CDE三点在同一直线上.

1)求证:BAD≌△CAE

2)猜想BDCE有何特殊位置关系,并说明理由.

 

(1)证明见解析;(2)BD⊥CE,理由见解析. 【解析】 (1)要证△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得; (2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDC=90°,需证∠DBC+∠DCB =90°,可由直角三角形提供. (1)∵∠BAC=∠DAE=90°, ∴∠BAC+∠CAD=∠EAD+∠CAD, ∴∠BAD=∠CAE, 在△BAD和△CAE中, , ∴△BAD≌△CAE(SAS); (2)BD⊥CE,理由如下: 由(1)知,△BAD≌△CAE, ∵∠ABD+∠DBC=45°, ∴∠ACE+∠DBC=45°, ∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°, ∴∠BDC=90°,即BD⊥CE.
复制答案
考点分析:
相关试题推荐

如图,在△ABC中,AB=CB,∠ABC=90°DAB延长线上一点,点EBC边上,连结AEDEDC,且AE=CD

1)求证:△ABE≌△CBD

2)若∠CAE=30°,求∠BDC的度数.

 

查看答案

已知abc为△ABC的三边长,bc满足(b-22+│c-3│=0,且a为方程│x-4│=2的解,求△ABC的周长,并判断△ABC的形状.

 

查看答案

如图,点BECF在同一条直线上,ABDEACDFBECF,求证:AB∥DE

 

查看答案

如图,ACBD 相交于点 O,∠A=D, AB=CD.求证:AOCDOC.

 

查看答案

已知:如图,直线ADBC交于点O,OA=OD,OB=OC.求证:ABCD.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.