某校绿化校园,计划在校园内种植A,B两种树木,需要购买这两种树苗500棵.A,B两种树苗的相关信息如表:
| 单价(元/棵) | 成活率 | 植树费(元/棵) |
A | 200 | 80% | 20 |
B | 280 | 90% | 20 |
设购买A种树苗x棵,种植这批树苗的总费用(树苗费用与种树费之和)为y元,解答下列问题:
(1)写出y(元)与x(棵)之间的函数关系式;
(2)若这批树苗种植后成活了420棵,则种植这批树苗的总费用需要多少元?
(3)由于学校资金有限,种植树苗的总费用不能超过130000元,则至少要购买相对便宜的A种树苗多少棵?
如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E.F分别是AB、AC边上的点,且DE⊥DF,
(1)求证:CF=AE;
(2)若BE=8,CF=6,求线段EF的长.
在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)
直线y=2x﹣2与x轴交于点A,与y轴交于点B.
(1)求点A,B的坐标;
(2)画出直线AB,并求△OAB的面积;
(3)点C在x轴上,且AC=AB,直接写出点C坐标.
如图,在直角坐标系中,先描出点A(1,3),点B(4,1).
(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标 ;
(2)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹);
(3)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹).
如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.
(1)求证:△ABE≌△CBD;
(2)证明:∠1=∠3.