下列四个腾讯软件图标中,属于轴对称图形的是( )
A. B. C. D.
已知:直线y=x+3与x轴、y轴分别相于点A和点B,点C在线段AO上.
将△CBO沿BC折叠后,点O恰好落在AB边上点D处
(1)求直线BC的解析式;
(2)求点D的坐标;
(3)P为平面内一动点,且以A、B、C、P为顶点的四边形为平行四边形,直接写出点P坐标 .
操作与证明:
如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断线段MD与MN的关系,得出结论;
结论:DM、MN的关系是: ;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C旋转180°,其他条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
为了迎接五一黄金周的购物高峰,某品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
运动鞋价格 | 甲 | 乙 |
进价(元/双) | m | m﹣30 |
售价(元/双) | 240 | 160 |
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)若购进乙种运动鞋x(双),要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于13000元且不超过13500元,问该专卖店有几种进货方案;
(3)在(2)的条件下求出总利润y(元)与购进乙种运动鞋x(双)的函数关系式,并用关系式说明哪种方案的利润最大,最大利润是多少.
如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.
如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.