下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:
(1)体育场离张强家的多远?张强从家到体育场用了多长时间?
(2)体育场离文具店多远?
(3)张强在文具店逗留了多久?
(4)计算张强从文具店回家的平均速度.
已知:如图,∠ABC,射线BC上一点D,
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)
如图,在平面直角坐标系中,A(- 1,5),B(- 1,0),C(- 4,3).
(1)求出△ABC的面积;
(2)在图中作出△ABC关于轴的对称图形△A1B1C1;
(3)设P是y轴上的点,要使得点P到点A,C的距离和最小,求点P的坐标.
某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)与行李质量x(kg)之间的函数表达式为,这个函数的图像如图所示,求:
(1)k和b的值;
(2)旅客最多可免费携带行李的质量;
(3)行李费为4~15元时,旅客携带行李的质量为多少?
如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.
(1)求证:△BCD≌△ACE;
(2)若AD=3,BD=4,求DE的长.
已知池中有600m3的水,每小时抽50m3.
(1)写出剩余水的体积Vm3与时间th之间的函数表达式;
(2)写出自变量t的取值范围;
(3)8h后,池中还剩多少水?
(4)多长时间后,池中剩余100m3的水?