若二次根式有意义,则的取值范围是( )
A. B. C. D.
阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? (填“是”或“不是”).
小丽经过三次折叠发现了∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.
如图所示,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α, 以OC为边作等边三角形OCD,连接AD.
(1)当α=150°时,试判断△AOD的形状,并说明理由;
(2)探究:当a为多少度时,△AOD是等腰三角形?
观察下列式子:
x 1x 1 x21
x 1x2x1 x31
x1x3x2 x 1 x41
.....
你能发现什么规律吗?
(1)根据上面各式的规律可得: x 1(xn xn1 ... x2 x 1) (其中 n 为正整数)
(2)根据(1)的规律计算:1 2 22 23 24 ... 262 263 .
如图,在所给网格图(每小格均为边长是 1 的正方形)中完成下列各题:
(1)画出格点△ABC(顶点均在格点上)关于直线 DE 对称的△A1B1C1;
(2)在 DE 上画出点 P,使 PA+PC 最小;
(3)在 DE 上画出点 M,使|MB−MC1|最大.
先化简,再求值: x 2 y2 x y(x y) 5 y 2,其中 x , y 2.