满分5 > 初中数学试题 >

正方形ABCD中,△ADF绕着点A顺时针旋转90°后得到△ABM,点M、B、C在...

正方形ABCD中,ADF绕着点A顺时针旋转90°后得到ABM,点MBC在一条直线上,且AEMAEF恰好关于AE所在直线成轴对称。已知EF=7,正方形边长为8

1)写出图中形状、大小都相等的三角形

2)求EFC的面积。

 

(1)△AEM≌△AEF,△ADF≌△ABM;(2)8. 【解析】 (1)利用轴对称性质可判断△AEM≌△AEF,利用旋转的性质得到△ADF≌△ABM; (2)由于△AEM≌△AEF,则EF=EM,即,则根据三角形面积公式得到,然后利用可表示出△EFC的面积. 【解析】 (1)根据轴对称性质可判断△AEM≌△AEF,根据旋转的性质得到△ADF≌△ABM; (2)∵△AEM与△AEF恰好关于所在直线成轴对称, ∴EF=EM=7, 即BE+BM=7, ∵BM=DF, ∴DF+BE=7, ∴, ∴
复制答案
考点分析:
相关试题推荐

一个长5微米,宽4微米,高3微米的长方体微机零件的体积是多少立方厘米?(1微米=厘米)

 

查看答案

在边长为1的正方形网格中:

1)画出ABC绕着点O旋转180°后的A’B’C’

2ABCA’B’C’的重叠部分面积为        

 

查看答案

已知,求的值

 

查看答案

解方程:

 

查看答案

1)计算:    

2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.