如图1,△ABC中,CD⊥AB于D,且BD=4,AD=6,CD=8.
(1)求证:∠ACB=∠ABC;
(2)如图2,E为AC的中点,连结DE.动点M从点B出发以每秒1cm的速度沿线段BA向点A 运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时另一个点也停止运动.设点M运动的时间为t(秒),
①若MN与BC平行,求t的值;
②问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°,E是AC边上的一个动点(点E与A,C不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BE,AD.猜想线段BE,AD之间的关系.
(1)独立思考:请直接写出线段BE,AD之间的数量关系:
(2)合作交流:城南中学八年级某学习小组受上述问题的启发,将图(1)中的等腰直角△ECD绕着点C顺时针方向旋转至如图(2)的位置,BE交AC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.
(3)拓展延伸:图(1)中AD和BE存在着怎样的位置关系?在等腰直角△ECD绕着点C顺时针方向旋转的过程中AD和BE的这种位置关系是否会变化?请结合图(2)说明理由.
在“扶贫攻坚”活动中,城南中学计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.
(1)请问甲、乙两种物品的单价各为多少?
(2)如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5020元,通过计算得出共有几种选购方案?
如图,AC⊥AB于点A,CD⊥BD于点D,AB=CD,AC与BD相交于点O.
(1)求证:△ABC≌△DCB;
(2)△OBC是何种三角形?并说明理由
如图,已知D,E在三角形ABC的边BC上,且AB=AC,AD=AE。求证:BD=CE
如图,AB与CB是两条公路,C,D是两个村庄,现在要建一个菜市场,使它到两个村庄的距离相等,而且还要使它到两条公路的距离也相等,用尺规作图画出菜市场的位置.(不写作法,保留作图痕迹)