如图与相切于点为上点,则下列说法中错误的( )
A.是圆心角 B.是圆周角
C.是圆周角 D.是圆心角
若,则( )
A. B. C.-2或2 D.
如图,已知抛物线经过点,,三点,点与点关于轴对称,点是线段上的一个动点,设点的坐标为,过点作轴的垂线交抛物线于点,交直线于点.
(1)求该抛物线所表示的二次函数的表达式;
(2)在点运动过程中,是否存在点,使得以为直径的圆与轴相切?若存在,求出的值;若不存在,请说明理由;
(3)连接,将绕平面内某点顺时针旋转,得到,点、、的对应点分别是点、、.若的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”, 那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.
某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元。根据市场需求,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元,设每天安排人生产乙产品。
(1)根据信息填表:
产品种类 | 每天工人数(人) | 每天产量(件) | 每件产品可获利润(元) |
甲 | — | — | 15 |
乙 | — |
(2)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等,已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润(元)的最大值及相应的值。
如图,是的直径,交于,是上一点,为内心,交于,且.
(1)求证:是的切线;
(2)求证:.
如图,在直角坐标平面内,的三个顶点的坐标分别为,,,是绕点逆时针旋转得到的.
(1)求出线段旋转过程中所扫过的面积(结果保留);
(2)求出线段旋转过程中所扫过的面积(结果保留).