点A(﹣3,2)在反比例函数y=(k≠0)的图象上,则k的值是( )
A.﹣6 B.﹣ C.﹣1 D.6
问题提出:巴什博弈(BashGame):有100个棋子,两个人轮流从这堆子中取棋子,规定每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
问题深究:我们研究数学问题时,我们经常采用将一般问题特殊化的策略,因此我们首先取几个特殊值试试.
探究(1):3个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若自己先拿一个棋子,对手拿两个从而获胜:若白己先拿两个祺了,对手拿一个从而获胜,所以3个棋子时,后拿可胜.
探究(2):4个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若自己先拿一个棋子,剩余三个棋子,对方拿一个,自己拿两个从而获胜;对方拿两个,自己拿一个从而获胜.所以4个棋子时,先手先拿1个棋子可获胜.
探究(3):5个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若自己先拿两个棋子,剩余三个棋子,对方拿一个,自己拿两个从而获胜;对方拿两个,自已拿一个从而获胜,所以5个棋子时,先手先拿2个棋子可获胜.
探究(4):6个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若对方先拿一个,再按探究(3)的拿法,自已可获胜;若对方先拿两个,再按照探究(2)的拿法,自己可获胜,所以6个棋子时,后拿可胜.
探究(5):7个棋子,每人每次可拿一个或两个棋子,最后拿光者获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
若自己先拿一个棋子,剩余六个棋子,若对方再拿一个自己再拿 个可获胜;若对方再拿两个,自己再拿 个可获胜,所以7个棋子时,先手先拿1个棋子可获胜.
……
探究总结:
(1)当总棋子个数 个时,后拿可胜;
(2)当总棋子个数 个时,先拿可胜.
问题解决:有100个棋子,两个人轮流从这堆棋子中取棋子,规定每人每次可拿1个或2个棋子,最后拿光者获胜.要想获胜是先拿还是后拿?若是先拿应怎样拿?
问题拓展:13个棋子,每人每次可拿一个,两个或三个棋子,最后拿光着获胜,要想获胜是先拿还是后拿?若是先拿应怎样拿?
在生活中,人们经常通过一些标志性建筑确定位置,在数学中往往也是这样.
(1)将正整数如图1的方式进行排列:
小明同学通过仔细观察,发现每一行第一列的数字有一定的规律,所以每一行第一列的数字可以作为标志数,于是他认为第七行第一列的数字是 ,第7行、第5列的数字是 .
(2)方法应用
观察下面一列数:1,﹣2,3,﹣4,5,﹣6,7,…并将这列数按照如图2方式进行排列:
按照上述方式排列下去,
问题1:第10行从左边数第9个数是 ;
问题2:第n行有 个数;(用含n的代数式表示)
问题3:数字2019在第 行,从左边数第 个数.
某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):
①买一套西装送一条领带;
②西装按原价的9折收费,领带按原价的8折收费.
在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).
(1)两种方案需的费用分别是多少元?(用含x、y的代数式表示并化简)
(2)若该客户需要购买20套西装,25条领带,则他选择哪种方案更划算?
如图,在一张长为a、宽为b的长方形纸片上,剪掉一个大圆和两个半径相等的小圆.
(1)列出剩余纸片(图中阴影部分)面积的代数式;(结果要求化简)
(2)当a=6cm,b=4cm时,求阴影部分的面积,(π取3.14)
一辆客车从甲地开往乙地,车上原有(4a﹣3b)名乘客,中途有乘客下车,且没有人上车,已知下车的乘客数比车上原有乘客数的一半还多2人.
(1)用代数式表示中途下车的乘客数
(2)用代数式表示车上现有多少名乘客?
(3)当a=9,b=6时,求车上现有的乘客数.