满分5 > 初中数学试题 >

如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,...

如图,四边形ABCD的四个顶点分别在反比例函数(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

 

(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32. 【解析】 (1)①先确定出点A,B坐标,再利用待定系数法即可得出结论; ②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论; (2)先确定出B(4,),D(4,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论. (1)①如图1, , 反比例函数为, 当时,, , 当时, , , , 设直线的解析式为, , , 直线的解析式为; ②四边形是菱形, 理由如下:如图2, 由①知,, 轴, , 点是线段的中点, , 当时,由得,, 由得,, ,, , , 四边形为平行四边形, , 四边形是菱形; (2)四边形能是正方形, 理由:当四边形是正方形,记,的交点为, , 当时,, ,, , ,,, , , .
复制答案
考点分析:
相关试题推荐

某校开设了“3D打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调査(问卷调査表如图所示),将调査结果整理后绘制例图1、图2两幅均不完整的统计图表.

 

最受欢迎的校本课程调查问卷

您好!这是一份关于您最喜欢的校本课程问卷调查表,请在表格中选择一个(只能选一个)您最喜欢的课程选项,在其后空格内打“√”,非常感谢您的合作.

选项

校本课程

 

A

3D打印

 

B

数学史

 

C

诗歌欣赏

 

D

陶艺制作

 

 

 

校本课程

频数

频率

A

36

0.45

B

 

0.25

C

16

b

D

8

 

合计

a

1

 

请您根据图表中提供的信息回答下列问题:

1)统计表中的a     b     

2D对应扇形的圆心角为     度;

3)根据调査结果,请您估计该校2000名学生中最喜欢数学史校本课程的人数;

4)小明和小亮参加校本课程学习,若每人从ABC三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.

 

查看答案

已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E

1)求证:AC·AD=AB·AE

2)如果BD⊙O的切线,D是切点,EOB的中点,当BC=2时,求AC的长.

 

查看答案

已知:如图,正方形ABCD中,P是边BC上一点,BEAP,DFAP,垂足分别是点E、F.

(1)求证:EF=AE﹣BE;

(2)联结BF,如果=.求证:EF=EP.

 

查看答案

已知关于的一元二次方程

(1)若方程有实数根,求实数的取值范围

(2)若方程两实数根分别为,且满足,求实数的值

 

查看答案

先化简,再求值:()÷,其中a=

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.