满分5 > 初中数学试题 >

在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,...

在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.

(1)求这条抛物线的表达式;

(2)求线段CD的长;

(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点My轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.

 

(1)抛物线解析式为y=﹣x2+2x+;(2)线段CD的长为2;(3)M点的坐标为(0,)或(0,﹣). 【解析】 (1)利用待定系数法求抛物线解析式; (2)利用配方法得到y=﹣(x﹣2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),根据旋转性质得∠PDC=90°,DP=DC=t,则P(2+t,﹣t),然后把P(2+t,﹣t)代入y=﹣x2+2x+得到关于t的方程,从而解方程可得到CD的长; (3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E点坐标为(2,﹣2),设M(0,m),当m>0时,利用梯形面积公式得到•(m++2)•2=8当m<0时,利用梯形面积公式得到•(﹣m++2)•2=8,然后分别解方程求出m即可得到对应的M点坐标. (1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得 ,解得, ∴抛物线解析式为y=﹣x2+2x+; (2)∵y=﹣(x﹣2)2+, ∴C(2,),抛物线的对称轴为直线x=2, 如图,设CD=t,则D(2,﹣t), ∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处, ∴∠PDC=90°,DP=DC=t, ∴P(2+t,﹣t), 把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t, 整理得t2﹣2t=0,解得t1=0(舍去),t2=2, ∴线段CD的长为2; (3)P点坐标为(4,),D点坐标为(2,), ∵抛物线平移,使其顶点C(2,)移到原点O的位置, ∴抛物线向左平移2个单位,向下平移个单位, 而P点(4,)向左平移2个单位,向下平移个单位得到点E, ∴E点坐标为(2,﹣2), 设M(0,m), 当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,); 当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣); 综上所述,M点的坐标为(0,)或(0,﹣).
复制答案
考点分析:
相关试题推荐

小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

 

查看答案

如图,四边形ABCD的四个顶点分别在反比例函数(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

 

查看答案

某校开设了“3D打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调査(问卷调査表如图所示),将调査结果整理后绘制例图1、图2两幅均不完整的统计图表.

 

最受欢迎的校本课程调查问卷

您好!这是一份关于您最喜欢的校本课程问卷调查表,请在表格中选择一个(只能选一个)您最喜欢的课程选项,在其后空格内打“√”,非常感谢您的合作.

选项

校本课程

 

A

3D打印

 

B

数学史

 

C

诗歌欣赏

 

D

陶艺制作

 

 

 

校本课程

频数

频率

A

36

0.45

B

 

0.25

C

16

b

D

8

 

合计

a

1

 

请您根据图表中提供的信息回答下列问题:

1)统计表中的a     b     

2D对应扇形的圆心角为     度;

3)根据调査结果,请您估计该校2000名学生中最喜欢数学史校本课程的人数;

4)小明和小亮参加校本课程学习,若每人从ABC三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.

 

查看答案

已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E

1)求证:AC·AD=AB·AE

2)如果BD⊙O的切线,D是切点,EOB的中点,当BC=2时,求AC的长.

 

查看答案

已知:如图,正方形ABCD中,P是边BC上一点,BEAP,DFAP,垂足分别是点E、F.

(1)求证:EF=AE﹣BE;

(2)联结BF,如果=.求证:EF=EP.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.