满分5 > 初中数学试题 >

(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点...

1)如图(1),已知:在△ABC中,∠BAC90°AB=AC,直线m经过点ABD⊥直线m, CE⊥直线m,垂足分别为点DE.证明:DE=BD+CE.

2)如图(2),将(1)中的条件改为:在△ABC中,AB=ACDAE三点都在直线m,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3)拓展与应用:如图(3),DEDAE三点所在直线m上的两动点(DAE三点互不重合),F∠BAC平分线上的一点,△ABF△ACF均为等边三角形,连接BDCE,∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

 

(1)见解析(2)成立(3)△DEF为等边三角形 【解析】 【解析】 (1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900. ∵∠BAC=900,∴∠BAD+∠CAE=900. ∵∠BAD+∠ABD=900,∴∠CAE=∠ABD. 又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE. ∴DE="AE+AD=" BD+CE. (2)成立.证明如下: ∵∠BDA =∠BAC=,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—.∴∠DBA=∠CAE. ∵∠BDA=∠AEC=,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE. ∴DE=AE+AD=BD+CE. (3)△DEF为等边三角形.理由如下: 由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE, ∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600. ∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE. ∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE. ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600. ∴△DEF为等边三角形. (1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE. (2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD. (3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.  
复制答案
考点分析:
相关试题推荐

已知:如图,在△ABC中,∠ABC=45°,AH⊥BC于点H,点D为AH上的一点,且DH=HC,连结BD并延长BD交AC于点E,连结EH.

(1)请补全图形;

(2)直接写出BD与AC的数量关系和位置关系;

(3)求证:∠BEH=45°.

 

查看答案

列方程解应用题:某列车平均提速80km/h,用相同的时间,该列车提速前行驶300km,提速后比提速前多行驶200km,求该列车提速前的平均速度.

 

查看答案

分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式,例如,分式是真分式,如果分子的次数不低于分母的次数,称这样的分式为假分式,例如,分式是假分式,一个假分式可以化为一个整式与一个真分式的和,例如,.

(1)将假分式化为一个整式与一个真分式的和;

(2) 若分式的值为整数,求的整数.

 

查看答案

已知:如图,∠ABC,射线BC上一点D.

(1)求作:等腰PBD,使线段BD为等腰PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.

(2)(1)的条件下,若DPAB,求∠ABC的度数.

 

查看答案

分解因式:x2+12x189,由于常数项数值较大,则将x2+12x189变为完全平方公式,再运用平方差公式进行分解,这样简单易行.

x2+12x189x2+2×6x+6236189

(x+6)2225

(x+6)2152

(x+6+15)(x+615)

(x+21)(x9)

请按照上面的方法分解因式:x260x+884.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.