化学与生产、生活密切相关,下列有关说法正确的是
A. 聚氯乙烯塑料常用于食品保鲜膜
B. 研发使用高效催化剂,可提高可逆反应中原料的平衡转化率
C. 明矾可用于饮用水的净化,但不能杀菌消毒
D. 高纯度的硅单质广泛用于制作光导纤维
医用麻醉药苄佐卡因E和食品防腐剂J的合成路线如下:
已知:I. M代表E分子结构中的一部分
II.
请回答下列问题:
(1) 芳香烃A的质谱图如下图,其名称是____________________。
(2) E中所含官能团的名称是________________________。
(3)由A制备F的反应类型是____________________。
(4)C能与NaHCO3溶液反应,反应①的化学方程式是____________________。
(5)反应②中试剂ⅱ是_______________。(填序号)
a.高锰酸钾酸性溶液 b.氢氧化钠溶液
(6)写出反应③的化学反应方程式____________。
(7) J有多种同分异构体,写出其中所有符合下列条件的结构简式_______________。
a.为苯的邻位二元取代物,且与FeCl3可以发生显色反应
b.与J具有相同的官能团,且能发生银镜反应
(8)以A为起始原料,选用必要的无机试剂合成涂改液的主要成分亚甲基环己烷(),写出合成路线(用结构简式表示有机物,用箭头表示转化关系,箭头上注明试剂和反应条件):_____________。
CuSO4和Cu(NO3)2是自然界中重要的铜盐。请回答下列问题:
(1)CuSO4和Cu(NO3)2中阳离子的核外价电子排布式为____________,S、O、N三种元素的第一电离能由大到小的顺序为________________。
(2)NO3-的立体构型是____________,与NO3-互为等电子体的一种非极性分子为__________(填化学式)。
(3)CuSO4的熔点为560°C,Cu(NO3)2的熔点为115℃,CuSO4熔点更高的原因是___________。
(4)往CuSO4溶液中加人过量NaOH能生成配合物[Cu(OH)4]2-。不考虑空间构型,[Cu(OH)4]2-的结构可用示意图表示为_________________(用箭头表示出配位键的位置)
(5)化学实验室常利用新制氢氧化铜检验醛基的存在,乙醛分子中碳原子的杂化方式为____________。
(6)利用新制的Cu(OH)2检验醛基时,生成红色的Cu2O,其晶胞结构如下图所示。
①该晶胞原子坐标参数A为(0,0,0);B为(1,0,0);C为(,,)。则D原子的坐标参数为_____,它代表___________________原子。
②若Cu2O晶体的密度为d g ·cm-3,Cu和O的原子半径分别为rCu pm和rO pm,阿伏加德罗常数值为NA,列式表示Cu2O晶胞中原子的空间利用率为_________________。
碲(Te)广泛用于彩色玻璃和陶瓷。工业上用精炼铜的阳极泥(主要含有TeO2、少量Ag、Au)为原料制备单质碲的一种工艺流程如下:
已知TeO2微溶于水,易溶于较浓的强酸和强喊。
(1)“碱浸”时发生反应的离子方程式为____________________。
(2)碱浸后的“滤渣”可以部分溶于稀硝酸,发生反应的化学方程式是______________。
(3)“沉碲”时控制溶液的pH为4. 5〜5. 0,生成TeO2沉淀。酸性不能过强,其原因是_______________;防止局部酸度过大的操作方法是_________。
⑷“酸溶”后,将SO2通人TeCl4酸性溶液中进行“还原”得到碲,该反应的化学方程式是__________。
(5)25°C 时,亚碲酸(H2TeO3) 的Ka1=1×10-3,Ka2=2×10-8。
①0.1 mol·L-1 H2TeO3电离度α约为_____________。(α=×100%)
②0. lmol • L-1的NaH TeO3溶液中,下列粒子的物质的量浓度关系正确的是___________。
A.c(Na+ )>c(HTeO3- )>c(OH-)>c(H2TeO3)>c(H+ )
B.c(Na+) + c( H+) >= c(HTeO3- ) +c(TeO32-) +c(OH- )
C.c(Na+ ) =c(TeO32-) +c( HTeO3-) + c( H2TeO3)
D.c(H+)+c(H2TeO3)=c(OH-)+e(TeO32-)
镓(Ga)与铝位于同一主族,金属镓的熔点是29. 8℃,沸点是2403℃,是一种广泛用于电子工业和通讯领域的重要金属。
(1)工业上利用镓与NH3在1000℃高温下合成固体半导体材料氮化镓(GaN),同时生成氢气,每生成lmol H2时放出10.27 kJ热量。
写出该反应.的热化学方程式___________________。
(2) 在密闭容器中,充入一定量的Ga与NH3发生反应,实验测得反应平衡体系中NH3的体积分数与压强P和温度T的关系曲线如图1所示。
①图1中A点和C点化学平衡常数的大小关系是:KA_____ KC,(填“<”“=”或“>”),理由
是____________。
②在T1和P6条件下反应至3min时达到平衡,此时改变条件并于D点处重新达到平衡,H2的浓度随反应时间的变化趋势如图2所示(3〜4 min的浓度变化未表示出来),则改变的条件为________(仅改变温度或压强中的一种)。
(3)气相平衡中用组份的平衡分压(PB)代替物质的量浓度(cB)也可以表示平衡常数(记作Kp),用含P6的式子表示B点的Kp=_____________。
(4)电解精炼法提纯嫁的具体原理如下:以粗镓(含Zn、Fe、Cu杂质)为阳极,以高纯镓为阴极,以NaOH溶液为电解质,在电流作用下使粗镓溶解进入电解质溶液,并通过某种离子迁移技术到达阴极并在阴极放电析出高纯镓。
①已知离子氧化性顺序为:Zn2+3+2+2+。电解精炼镓时阳极泥的成分是________________。
②镓在阳极溶解生成的Ga3+与.NaOH溶液反应生成GaO2-,该反应的离子方程式为_________________;
GaO2-在阴极放电的电极反应式是________________。
资料显示:O2的氧化性随溶液pH的增大逐渐减弱。室温下,某学习小组利用下图装置探究不同条件下KI与O2的反应,实验记录如下。
序号 | 烧杯中的液体 | 5分钟后现象 |
① | 2 mL 1mol·L-1KI溶液+5滴淀粉 | 无明显变化 |
② | 2 mL1 mol·L-1KI 溶液+5 滴淀粉+2mL0. 2 mol·L-1HC1 | 溶液变蓝 |
③ | 2mLl mol·L-1KI溶液+5滴淀粉+ 2mL0.2 mol·L-1KC1 | 无明显变化 |
④ | 2mL1 mol·L-1KI溶液+5滴淀粉+2 mL0. 2 mol·L-1CH3COOH | 溶液变蓝,颜色 较②浅 |
回答下列问题:
(1)实验③的目的是__________________。
(2)实验②中发生反应的离子方程式是_____________________。
(3)实验②比实验④溶液颜色深的原因是___________________。
为进一步探究KI与O2的反应,用上述装置继续进行实验:
序号 | 烧杯中的液体 | 5小时后现象 |
⑤ | 2mL混有KOH的pH=8.5的lmol·L-1 KI溶液+5滴淀粉 | 溶液略变蓝 |
⑥ | 2mL混有KOH的pH=10的lmol • L-1KI溶液+5滴淀粉 | 无明显变化 |
对于实验⑥的现象。甲同学猜想“pH = 10时O2不能氧化I-”,他设计了下列装置进行实验以验证猜想。
(4)烧杯a中的溶液为________________。
(5)实验结果表明此猜想不成立。支持该结论的实验现象是:通入O2后,_____________。
(6)乙同学向pH = 10的“KOH一淀粉溶液”中滴加碘水,溶液先变蓝后迅速褪色,经检测褪色后的溶液中含有IO3- ,用离子方程式表示退色的原因是___________________。
(7)该小组同学对实验过程进行了整体反思,推测实验①和实验⑥的现象产生的原因分别可能是__________。