2020年1月武汉爆发新冠肺炎,湖北省采取封城封镇的措施阻止了冠状病毒蔓延。新冠病毒主要传播方式是经飞沫传播、接触传播(包括手污染)以及不同大小的呼吸道气溶胶近距离传播。冠状病毒对热敏感,56℃30分钟、75%酒精、含氯消毒剂、过氧乙酸、乙醚和氯仿等脂溶剂均可有效灭活病毒。下列有关说法正确的是( )
A.因为过氧乙酸能灭活病毒,所以在家每天进行醋熏能杀死家里的新冠肺炎病毒
B.电解食盐水制取次氯酸钠喷洒房间能杀死新冠肺炎病毒
C.在空气质量检测中的PM2.5,属于气溶胶
D.含氯消毒剂、过氧乙酸、乙醚和氯仿等都属于有机物
传统中草药金银花对治疗“新冠肺炎”有效,其有效成分“绿原酸”的一种人工合成路线如下:
已知:i.
ii.
回答下列问题:
(1)有机物B的名称是__________。
(2)C→D反应生成的官能团是__________。
(3)反应①的反应类型是__________。
(4)反应②的化学方程式是__________。
(5)反应③的目的是__________。
(6)G→绿原酸反应中,若水解时间过长会降低绿原酸产率,生成副产物F和(写结构简式)_______________。
(7)参照上述合成方法,设计三步反应完成以丙酸为原料制备高吸水性树脂聚丙烯酸钠 (无机试剂任选) ,写出合成路线__________。
氢能作为理想的清洁能源之一,已经受到世界各国的普遍关注。氢的存储是氢能应用的主要瓶颈,目前所采用或正在研究的主要储氢方法有:配位氢化物储氢、碳质材料储氢、合金储氢、多孔材料储氢等。
请回答下列问题:
(1)氨硼烷( NH3BH3)是一种潜在的储氢材料,它可由六元环状化合物(HB=NH)3通过3CH4+2(HB=NH)3+6H2O=3CO2+6H3BNH3制得。
①B、C、N、O第一电离能由大到小的顺序为_____________,CH4、H2O、CO2键角由大到小的顺序为_________________。
②1个(HB=NH)3分子中有______个σ键。与(HB=NH)3互为等电子体的分子为________(填分子式)。
③反应前后碳原子的杂化轨道类型分别为__________、____________。
④氨硼烷在高温下释放氢后生成的立方氮化硼晶体具有类似金刚石的结构,但熔点比金刚石低,原因是___________________________。
(2)一种储氢合金由镍和镧(La)组成,其晶胞结构如图所示。
①Ni 的基态原子核外电子排布式为_______________。
②该晶体的化学式为_______________。
③该晶体的内部具有空隙,且每个晶胞的空隙中储存6个氢原子比较稳定。已知:a=m pm,c=n pm;标准状况下氢气的密度为ρg·cm-3;阿伏加德罗常数的值为NA。若忽略吸氢前后晶胞的体积变化,则该储氢材料的储氢能力为______________。 (储氢能力=)
地球上的氮元素对动植物有重要作用,其中氨的合成与应用是当前的研究热点。人工固氮最主要的方法是Haber—Bosch法。通常用以铁为主的催化剂在400~500℃和10~30MPa的条件下,由氮气和氢气直接合成氨。
在Fe催化剂作用下的反应历程为(*表示吸附态):
化学吸附:N2(g)→2N* ;H2(g)→2H*;
表面反应:N*+H*⇌NH*;NH*+H*⇌NH2*;NH2*+H*⇌NH3*;
脱附:NH3*⇌NH3(g)
其中,N2的吸附分解反应活化能高、速率慢,决定了合成氨的整体反应速率。
请回答:
(1)已知合成氨反应中生成1 mol NH3放出46kJ热量,该反应的热化学方程式为______
(2)实际生产中,原料气中N2和H2物质的量之比为1:2.8。分析说明原料气中N2过量的理由________。
(3)关于合成氨工艺的下列理解,正确的是____________。
A.合成氨反应在不同温度下的ΔH和ΔS都小于零
B.控制温度远高于室温,是为了保证尽可能高的平衡转化率和快的反应速率
C.基于NH3有较强的分子间作用力可将其液化,不断将液氨移去,利于反应正向进行
D.原料中N2由分离空气得到,H2由天然气与水蒸气反应生成,原料气需要经过净化处理,以防止催化剂中毒和安全事故发生
(4)已知反应:N2(g)+H2(g)⇌NH3(g)标准平衡常数,其中为标准压强(1×105Pa),、和为各组分的平衡分压,如:=,p为平衡总压,为平衡系统中NH3的物质的量分数。
若N2和H2起始物质的量之比为1:3,反应在恒定温度和标准压强下进行,N2的平衡转化率为,则=_________(用含的最简式表示)。
(5)常温常压下电解法合成氨的原理如图所示:
①阴极生成氨的电极反应式为__________。
②阳极产物只有O2,电解时实际生成的NH3的总量远远小于由O2理论计算所得NH3的量,结合电极反应式解释原因:___________________。
过二硫酸钠(Na2S2O8)也叫高硫酸钠,可用于废气处理及有害物质氧化降解.用(NH4)2S2O8溶液和一定浓度的NaOH溶液混合可制得Na2S2O8晶体,同时还会放出氨气。某化学兴趣小组利用该原理在实验室制备Na2S2O8晶体(装置如图所示).
已知:反应过程中发生的副反应为2NH3+3Na2S2O8+6NaOH6Na2SO4+6H2O+N2
(1)图中装有NaOH溶液的仪器的名称为___,反应过程中持续通入氮气的目的是___。
(2) (NH4)2S2O8可由电解硫酸铵和硫酸的混合溶液制得,写出电解时阳极的电极反应式:___。
(3)Na2S2O8溶于水中,会发生一定程度的水解,最终仅生成H2SO4、Na2SO4和另一种常温下为液态且具有强氧化性的物质,写出该反应的化学方程式:___。
(4)Na2S2O8具有强氧化性,该兴趣小组设计实验探究不同环境下Na2S2O8氧化性的强弱。将MnSO4•H2O(1.69g)与过量Na2S2O8(10g)溶于水中形成的混合溶液煮沸3min,观察并记录加入试剂时和加热过程中的现象(如表格所示)。
环境 | 调节溶液氧化环境时的现象 | 加热煮沸3min期间产生的现象 |
中性 | 加入VmL蒸馏水,无明显现象 | 30s时开始有大量气泡冒出,3min后溶液变深棕色,溶液中有悬浮小颗粒 |
碱性 | 加入VmL某浓度的NaOH溶液,瞬间变为棕色(MnO2) | 10s后溶液逐渐变为深紫色(MnO4-),没有明显冒气泡现象 |
酸性 | 加入VmL稀H2SO4无明显现象 | 煮沸3min后,有气泡冒出 |
①在___(填“中性”“酸性”或“碱性”)条件下,Na2S2O8的氧化能力最强。
②中性氧化时,会产生大量气泡,其原因为___。
③若用0.1mol•L-1的H2O2溶液滴定碱性氧化反应后的溶液(先将溶液调至酸性再滴定),滴定终点时的现象为___;达到滴定终点时,消耗H2O2溶液的体积为V1rnL。则碱性氧化后的溶液中NaMnO4的质量为___ g(用含V1的代数式表示,5H2O2~2)。
三草酸合铁酸钾[K3Fe(C2O4)3•3H2O]是制备负载型活性铁催化剂的主要原料。某化学小组探究用废铁屑(含少量-2价S元素)为原料制备三草酸合铁(Ⅲ)酸钾晶体。具体流程如图:
已知:①(NH4)2Fe(SO4)2•6H2O为蓝绿色晶体,FeC2O4·2H2O为难溶于水的黄色晶体,K3Fe(C2O4)3·3H2O为可溶于水、难溶于乙醇的翠绿色晶体。
②25℃时,[Fe(C2O4)3]3-(aq)+SCN-(aq)[Fe(SCN)]2+(aq)+3C2O(aq) K=6.31×10-17。
③[Fe(SCN)]2+(aq)为血红色。
回答下列问题:
(1)三草酸合铁酸钾[K3Fe(C2O4)3•3H2O]中铁的化合价是_____。
(2)废铁屑中加入10%NaOH并加热的目的是__。
(3)为防止污染空气,反应所产生的“废气”可选择__净化处理。(填选项)
A.H2O B.NaOH溶液 C.盐酸 D.CuSO4溶液
(4)写出浅绿色悬浊液中加入饱和H2C2O4生成黄色沉淀的化学方程式:__。
(5)制备过程中加入6%H2O2的目的是__,温度保持70~80℃,采用的合适加热方式是__。
(6)获得翠绿晶体的操作①是___。
(7)用乙醇洗涤晶体的原因是___。
(8)某同学欲检验所制晶体中的Fe(Ⅲ),取少量晶体放入试管中,加蒸馏水使其充分溶解,再向试管中滴入几滴0.1mol•L-1KSCN溶液。请判断上述实验方案是否可行并说明理由:___。