低温迫使植物细胞产生大量对细胞有害的过氧化物,如脂质过氧化物(MDA)。超氧化物歧化酶(SOD)能够消除过氧化物,从而增强植物的抗冷性。研究人员进行了“水杨酸对水稻幼苗抗冷性的影响”实验,实验步骤及结果如表所示。
组别 | 处理 | 培养温度 /℃ | |
1 | 蒸馏水浇灌 | 25 | 7.3 |
2 | ① | ② | 9.4 |
3 | 0.5 mmol/L水杨酸浇灌 | 5 | 10.3 |
4 | 1.0 mmol/L水杨酸浇灌 | 5 | 11.6 |
5 | 1.5 mmol/L水杨酸浇灌 | 5 | 13.6 |
6 | 2.0 mmol/L水杨酸浇灌 | 5 | 8.5 |
7 | 2.5 mmol/L水杨酸浇灌 | 5 | 7.9 |
8 | 3.0 mmol/L水杨酸浇灌 | 5 | 6.5 |
(1)表中①是________________,②是________。实验设计时每组取50株水稻幼苗,而不是1株,目的是______________________________________________________________________
________________________________________________________________________。
(2)本实验需要控制的无关变量有________________(至少写两个)。
(3)组别1和2对照可得的结论是
________________________________________________________________________。
对比组别2~8可得的结论是________________。在5 ℃的环境下,物质的量浓度为2.0 mmol/L的水杨酸对水稻幼苗抗冷性的影响是________(填“增强”或“减弱”)。
(4)请根据5 ℃条件下的实验结果完成水杨酸浓度—SOD活性关系的坐标曲线图。
下图是探究pH影响过氧化氢酶活性的实验装置图,请回答下列问题。
(1)肝脏研磨液可以用________来代替。除了自变量和因变量外,本实验哪些是无关变量(答出主要两点)?________________________________________________________________________
________________________________________________________________________。
(2)若要验证酶的高效性,在此实验装置的基础上,应如何改进?________________________________________________________________________。
(3)若用本实验装置来验证温度影响酶的活性,请你作出评价,并说明理由________________________________________________________________________。
(4)酶的化学本质是________。
(5)画出pH影响过氧化氢酶活性的变化曲线。
下表是探究淀粉酶对淀粉和蔗糖作用的实验设计及结果。根据实验结果,以下结论正确的是( )。
试管编号 | ① | ② | ③ | ④ | ⑤ | ⑥ |
2 mL质量分数为3%淀粉溶液 | + | + | + | - | - | - |
2 mL质量分数为3%蔗糖溶液 | - | - | - | + | + | + |
1 mL质量分数为2%的新鲜淀粉酶溶液 | + | + | + | + | + | + |
反应温度/℃ | 40 | 60 | 80 | 40 | 60 | 80 |
2 mL斐林试剂 | + | + | + | + | + | + |
砖红色深浅 | ++ | +++ | + | - | - | - |
注:“+”表示有,“-”表示无;“+”的多少代表颜色的深浅。
A.蔗糖被水解成非还原糖
B.淀粉在淀粉酶的作用下被水解成还原糖
C.淀粉酶活性在40 ℃时比60 ℃高
D.淀粉酶对蔗糖的水解具有专一性
实验中的变量主要有自变量、因变量和无关变量。下列控制无关变量的操作错误的是( )。
A.验证光合作用能产生淀粉的实验中,首先将实验植物做饥饿处理
B.探究唾液淀粉酶的最适pH的实验中,先将每一组温度控制在37 ℃
C.验证光合作用需要光照的实验中,将叶片的一半用黑纸包住
D.探究唾液淀粉酶最适温度的实验中,每一组都加入等量的淀粉
ATP是细胞的能量“通货”,下列说法正确的是( )。
A.ATP脱去2个磷酸基团后是DNA的基本组成单位之一
B.ATP与ADP相互转化的能量供应机制是生物界的共性
C.ATP的合成总是伴随有机物的氧化分解
D.黑暗条件下,植物细胞中只有线粒体可以产生ATP
在高温淀粉酶运用到工业生产时,需对该酶的最佳温度范围进行测定。图中的曲线①表示在一定温度范围内的相对酶活性(酶活性与酶最大活性的百分比)。将酶在不同温度下保温足够长的时间,再在酶活性最高的温度下测其残余酶活性,由此得到的数据为酶的热稳定性数据,即图中的曲线②。根据图中的数据,判断该酶使用的最佳温度范围是( )。
A.40~50 ℃ B.50~60 ℃
C.60~70 ℃ D.70~80 ℃