如图表示某病毒侵入宿主体内的复制过程,请据图回答下列问题:
(1)病毒核酸进入宿主细胞后,用血清学方法和电镜检查无病毒颗粒,称为“隐蔽期”,这是因为____________________________。
(2)物质D、H分别可能是______________、_____________。
(3)B、F的区别是________________。过程f称为________。
(4)假如A为RNA,经实验分析确定其碱基总数为X,其中鸟嘌呤G的数量为Y,你能否推断出构成A的几种碱基数量分别是多少吗?_______________________。根据中心法则分析,像A这样的RNA病毒遗传信息的传递过程与人体不同的步骤可能有___________、_________。
如图为人体某致病基因控制异常蛋白质合成的过程示意图。请回答下列问题:
(1)图中过程①是________,此过程既需要______________作为原料,还需要能与基因启动子结合的__________酶进行催化。
(2)若图中异常多肽链中有一段氨基酸序列为“—丝氨酸—谷氨酸—”,携带丝氨酸和谷氨酸的tRNA上的反密码子分别为AGA、CUU,则丝氨酸、谷氨酸的密码子分别为____________。
(3)图中所揭示的基因控制性状的方式是_________________________。
(4)在细胞中由少量b就可以短时间内合成大量的蛋白质,其主要原因是_______________。
铁蛋白是细胞内储存多余Fe3+的蛋白,铁蛋白合成的调节与游离的Fe3+、铁调节蛋白、铁应答元件等有关。铁应答元件是位于铁蛋白mRNA起始密码上游的特异性序列,能与铁调节蛋白发生特异性结合,阻遏铁蛋白的合成。当Fe3+浓度高时,铁调节蛋白由于结合Fe3+而丧失与铁应答元件的结合能力,核糖体能与铁蛋白mRNA一端结合,沿mRNA移动,遇到起始密码后开始翻译(如下图所示)。回答下列问题:
(1)图中甘氨酸的密码子是________,铁蛋白基因中决定“…————…”的模板链碱基序列为___________________________________。
(2)Fe3+浓度低时,铁调节蛋白与铁应答元件结合干扰了核糖体在mRNA上的___________,从而抑制了翻译的起始;Fe3+浓度高时,铁调节蛋白由于结合Fe3+而丧失与铁应答元件的结合能力,铁蛋白mRNA能够翻译。这种调节机制既可以避免____________对细胞的毒性影响,又可以减少细胞内____________________的浪费。
(3)若要改造铁蛋白分子,将图中色氨酸变成亮氨酸(密码子为UUA、UUG、CUU、CUC、CUA、CUG),可以通过改变DNA模板链上的一个碱基来实现,即由________变为________。
对DNA分子的碱基进行数量分析,可以通过检测其中某种碱基的数目及其比例来推断其他碱基数目及其比例。假如检测某DNA分子得知碱基A的数目为x,其所占比例为y,以下推断正确的是( )
A.碱基总数量为x/y
B.碱基C的数目为
C.嘌呤数与嘧啶数之比为x/(1-y)
D.碱基G的比例为(1-y)/2
假设一个双链均被32P标记的噬菌体DNA由5 000个碱基对组成,其中腺嘌呤占全部碱基的20%。用这个噬菌体侵染只含31P的大肠杆菌,共释放出100个子代噬菌体。下列叙述正确的是( )
A.该过程至少需要300 000个鸟嘌呤脱氧核苷酸
B.噬菌体增殖需要细菌提供模板、原料和酶等
C.含32P与只含31P的子代噬菌体的比例为1∶49
D.含32P与含31P的子代噬菌体的比例为1∶49
图为中心法则中部分遗传信息的流动方向示意图,有关说法正确的是( )
A.过程1、2一般可发生于RNA病毒的体内
B.过程1、3、5一般发生于肿瘤病毒的体内
C.过程2、3、4发生于具细胞结构的生物体内
D.过程1﹣5不可能同时发生于同一个细胞内