血管性痴呆(VD)是因脑血管阻塞导致脑缺血、缺氧,引起脑神经损伤所致的严重认知功能障碍综合征。常伴随记忆力减退、语言障碍、大小便失禁等症状。
(1)某VD患者不能说话,但能听懂别人讲话,原因可能是损伤了位于________的语言中枢的S区。大小便失禁的VD患者,其排尿反射的神经中枢位于________。
(2)为研究白藜芦醇对VD患者学习和记忆的影响,研究人员以大鼠为实验对象开展了相关研究。
将45只健康雄性大鼠随机分成A、B、C三组,分别进行如下表所示的处理。各组大鼠在相同的环境下饲养4周后,进行了水迷宫实验:将大鼠放入水中,进行逃生训练,记录各组平均逃生时间及典型逃生路线,结果分别如图1、如图2所示。
分组/处理 | A组 | B组 | C组 |
40mg/kg白藜芦醇预处理四周 | ? | - | + |
手术结扎颈动脉(血流量减少30%) | ? | + | + |
注:+表示进行处理;-表示未进行处理
①逃生训练前对A组的处理是________。
②如图1所示的结果为________。
③综合如图1和图2所示结果,可以得出的结论是________。
(3)神经细胞间传递信息的结构是________。白藜芦醇对血管性痴呆有一定预防作用,其机理是白藜芦醇能提高大脑皮层神经细胞中PSD95的表达量。nNOS(NO合成酶)与PSD95结合,催化NO产生。NO促进血管扩张,增加脑血流量,从而缓解脑缺血对脑部神经元的损伤。请写出验证上述推测的实验思路:________。
水稻叶片宽窄受细胞数目和细胞宽度的影响,为探究水稻窄叶突变体的遗传机理,科研人员进行了实验。
(1)科研人员利用化学诱变剂处理野生型宽叶水稻,可诱发野生型水稻的DNA分子中发生碱基对的__________,导致基因突变,获得水稻窄叶突变体。
(2)测定窄叶突变体和野生型宽叶水稻的叶片细胞数目和单个细胞宽度,结果如下图所示。该结果说明窄叶是由于__________所致。
(3)将窄叶突变体与野生型水稻杂交,F1均为野生型,F1自交,测定F2水稻的__________,统计得到野生型122株,窄叶突变体39株。据此推测叶片宽窄是受__________对等位基因控制。
(4)研究发现,窄叶突变基因位于2号染色体上。科研人员推测2号染色体上已知的三个突变基因可能与窄叶性状出现有关。这三个突变基因中碱基发生的变化如下表所示。
突变基因 | Ⅰ | Ⅱ | Ⅲ |
碱基变化 | C→CG | C→T | CTT→C |
蛋白质 | 与野生型分子结构无差异 | 与野生型有一个氨基酸不同 | 长度比野生型明显变短 |
由上表推测,基因Ⅰ的突变没有发生在__________序列,该基因突变__________(填“会”或“不会”)导致窄叶性状。基因Ⅲ突变使蛋白质长度明显变短,这是由于基因Ⅲ的突变导致mRNA提前出现__________。
(5)随机选择若干株F2窄叶突变体进行测序,发现基因Ⅱ的36次测序结果中该位点的碱基35次为T,基因Ⅲ的21次测序结果中该位点均为碱基TT缺失。综合上述实验结果判断,窄叶突变体是由于基因__________发生了突变。
a.Ⅱ b.Ⅲ c.Ⅱ和Ⅲ同时
已知某植物的花色有金黄花(A__BB、aa__ __)、黄花(A__Bb)、白花(A__bb);叶片大小有小叶(D__XE__)、中叶(D__XeXe、D__XeY)、大叶(dd__ __),控制花色、叶片表面积的基因各自独立遗传。分析回答:
(1)用两株金黄花植株作为亲本进行杂交,F1全为黄花植株。F1雌雄杂交产生F2。F1植株的基因型是____________,F2的表现型及比例是_________________。若F2中的白花植株随机受粉后得到900株植株,则其中金黄花植株约有____________株。
(2)现有两株小叶植株杂交,所得F1只有小叶和中叶两种类型。
①亲本基因型杂交组合有____________种,F1中的中叶植株所占的比例是___________。
②请设计杂交实验,探究亲本小叶雄株的基因型。
实验思路:__________________________________________________________________。
实验现象及结论:
a._______________________________,_______________________________;
b._______________________________,_______________________________。
芍药一般为二倍体(2n=10),是我国的传统花卉。在将二倍体芍药与四倍体芍药(4n=20)杂交获得性状优良的新品种过程中,发现其育性较低。为此,科研人员首先对新品种芍药花粉母细胞的减数分裂进行了进一步研究。请回答问题:
(1)将捣碎的花药置于载玻片上,经________、漂洗后,滴加________染色1min,制成临时装片。显微镜下观察细胞中________的形态、数目和位置来判断该细胞所处的分裂时期。
(2)花粉母细胞经过________分离和姐妹染色单体分开,最终获得雄配子,将显微镜下观察到的图象(图1)按时间排序为________
(3)新品种芍药的花粉母细胞中具有________个染色体组。结合图2分析,导致其雄配子育性降低的原因可能有________。
a.图①染色体因着丝粒异常而未能正常分离,染色体断裂后导致某些基因功能丧失
b.图②中落后的染色体在分裂末期丢失,从而导致配子染色体数目减少
C.图③减Ⅱ后期有的子细胞的染色体相互靠近未能分离,最终形成三个雄配子
d.图④两个次级精母细胞分裂不同步,导致授粉时有些花粉未成熟
(4)二倍体芍药与四倍体芍药属于不同物种的原因是________。
二甲双胍(Met)是广泛应用于临床的降血糖药物,近年来发现它还可降低肿瘤发生的风险。
(1)细胞发生癌变的根本原因是_____。由于癌细胞表面_____,易在体内扩散和转移。
(2)为探究Met对肝癌细胞增殖的影响,用含不同浓度Met的培养液培养肝癌细胞,结果如图1,该结果表明_____。用流式细胞仪测定各组处于不同时期的细胞数量,结果如图2,由此推测Met可将肝癌细胞的增殖阻滞在_____期。
(3)为进一步研究Met的作用机制,研究人员用含1mmol/L Met的培养液培养肝癌细胞12h后,结果发现呼吸链复合物Ⅰ的活性下降。
①呼吸链复合物Ⅰ位于_____上,参与有氧呼吸第三阶段(电子传递)。由实验结果推测Met通过减少_____供应,抑制肝癌细胞的增殖。
②另一方面, Met对癌细胞呼吸的影响导致线粒体内AMP/ATP比值_____,使AMPK磷酸化而被激活。(注:AMP为腺苷一磷酸)
③激活的AMPK(P-AMPK)可通过图3所示的信号转导途径抑制分裂相关蛋白的合成,从而抑制肝癌细胞的增殖。测定各组肝癌细胞中相关物质的含量,电泳结果如图4。
由于细胞中β-Actin蛋白的表达量_____,在实验中可作为标准对照,以排除细胞取样量、检测方法等无关变量对实验结果的影响。结合图3、4,阐述P-AMPK抑制肝癌细胞增殖的机制_____。
光合作用是植物体基本的物质代谢和能量代谢,以下是光合作用的实验,请回答相关问题:
(1)实验一:取长势致、无病害的青桐木幼苗随机均分为甲、乙、丙三个组,分别置于以下条件下培养,一段时间后测得其叶片的叶绿素a、叶绿素b的含量及最大净光合速率如表。请据表回答下列问题:
实验组别 | 实验条件 | 叶绿素a (mg/cm2) | 叶绿素b (mg/cm2) | 最大净光合速率 (mmolCO2/m2·s) |
甲 | 正常光照,正常供水 | 1.8×10-2 | 0.4×10-2 | 1.9×10-2 |
乙 | 弱光照,正常供水 | 1.7×10-2 | 0.4×10-2 | 0.7×10-2 |
丙 | 弱光照,减少供水 | 2.5×10-2 | 0.7×10-2 | 0.9×10-2 |
①干旱土壤中的作物光合作用弱的原因,一是光反应产生的________减少,从而使暗反应受阻;二是影响叶片气孔的开闭,使暗反应合成的________减少,进而生成的(CH2O)减少。
②与乙组相比,丙组最大净光合作用强度大,导致该差异的内因是________。根据上述实验结果,当处于弱光的冬春季时,若要提高青桐木幼苗光合作用强度,可采取的措施是________。
(2)实验二:为了选择适宜栽种的作物品种,研究人员在相同的条件下分别测定了3个品种S1、S2、S3的光补偿点和光饱和点,结果如图1和图2,请回答以下问题:
(注:植物体光合作用速率与呼吸作用速率相等时所需的光照强度称为光补偿点:光合作用速率达到最大时所需的最小光照强度称为光饱和点)
①最适宜在果树林下套种的品种是________,最适应较高光强的品种是________。
②叶绿体中光反应产生的能量既用于三碳化合物的还原,也参与叶绿体中生物大分子________等的合成。