关于减数分裂,下列说法正确的是( )
A.减数分裂过程中核 DNA 数目的减半只发生在减数第一次分裂
B.果蝇体细胞中有 4 对染色体,经过减数分裂后,配子中的染色体数目为 2 对
C.有丝分裂产生的子细胞含有该物种的全套遗传信息,而减数分裂产生的子细胞不含
D.在同一生物体内,有丝分裂后期细胞中的染色体数目是减数第二次分裂后期的 2 倍
下图为自然环境中一昼夜测得某植物的 CO2 的吸收速率曲线图,关于该图的相关叙述错误的是( )
A.a 点产生的原因是夜温降低,细胞呼吸减弱,CO2 释放减少
B.开始进行光合作用的点是:b,结束光合作用的点是:m
C.光合速率与呼吸速率相等的点是:c、h,有机物积累量最大的点:m
D.de 段下降的原因是气孔关闭,CO2 吸收减少,fh 段下降的原因是光照减弱
下列关于人体细胞的结构与功能的相关叙述错误是( )
A.人的胰腺腺细胞代谢旺盛,核仁的体积较大,核孔较多
B.人体细胞的细胞膜外侧分布有糖蛋白,有利于接收信息
C.细胞骨架由磷脂双分子层构成,与物质运输、能量转换、信息传递等生命密切相关
D.神经纤维膜上的 K+通道,有利于维持神经细胞的静息电位
水稻是自花授粉作物,杂交水稻育种成功得益于对雄性不育性状的利用,育种工作者就某水稻品系中发现的雄性不育基因开展了下面的一系列研究。
(1)水稻在抽穗期,幼穗中的雄蕊进行减数分裂产生花粉,此期间水稻对温度敏感。温敏雄性不育系S2表现为高温条件下(≥25℃)雄性不育,此雄性不育性状由RNZ基因控制。为了研究高温对RNZ基因表达的影响,研究人员选取长势基本一致的S2植株,均分为两组分别在低温、高温条件下进行处理,请根据后续实验过程
①检测RNZ基因的表达情况。请依据所学知识,写出以基因转录相对数量为指标,检测S2叶片和幼穗RNZ基因表达情况的基本程序____________________________________。
②实验记录数据如图。与S2叶片中RNZ基因表达情况比较,温度变化对S2幼穗中RNZ基因表达的影响是______________________。
(2)已知RNZ基因编码的核糖核酸酶在生物体各组织细胞中广泛存在,催化tRNA的加工。依据上述实验结果,研究人员猜测,由于叶片光合速率不同于幼穗,RNZ编码产物可能也分布于叶绿体中。为验证此推测,研究人员做了如下实验:
①构建RNZ-GFP融合基因表达载体(GFP为绿色荧光蛋白基因)。此表达载体除具有融合基因、启动子、终止子外,还应具有_________________。
②将表达载体导入____________中,然后通过_________技术获得转入RNZ-GFP融合基因的水稻。
③实验者将转基因植物细胞置于适宜的波长光谱的激发下(该操作会使叶绿体会发出红色荧光),观察到____,证明RNZ蛋白定位在叶绿体中。
④本实验还应补充一组_____________作为对照,若结果为_______________能支持③的结论成立。
(3)根据以上研究成果,为了最终揭示温敏雄性不育的机制,请写出接下来可以进一步研究的问题__________________。(写出1个即可)
野生生菜通常为绿色,遭遇低温或干旱等逆境时合成花青素,使叶片变为红色。花青素能够通过光衰减保护光合色素,还具有抗氧化作用。人工栽培的生菜品种中,在各种环境下均为绿色。科研人员对其机理进行了研究。
(1)用野生型深红生菜与绿色生菜杂交,F1自交,F2中有7/16的个体始终为绿色,9/16的个体为红色。
①本实验中决定花青素有无的基因位于___________对同源染色体上。
②本实验获得的F2中杂合绿色个体自交,后代未发生性状分离,其原因是:_________________。
(2)F2自交,每株的所有种子单独种植在一起可得到一个株系。所有株系中,株系内性状分离比为3:1的占___________________(比例),把这样的株系保留,命名为1号、2号__________。
(3)取1号株系中绿色与深红色个体进行DNA比对,发现二者5号染色体上某基因存在明显差异,如下图所示。
据图解释:1号株系中绿色个体的r1基因编码的r1蛋白丧失功能的原因 ___________________ 。
(4)进一步研究发现,与生菜叶色有关的R1和R2基因编码的蛋白质相互结合成为复合体后,促进花青素合成酶基因转录,使生菜叶片呈现深红色。在以上保留的生菜所有株系中都有一些红色生菜叶色较浅,研究人员从中找到了基因R3,发现R3基因编码的蛋白质也能与R1蛋白质结合。据此研究人员做出假设:R3蛋白与R2蛋白同时结合R1蛋白上的不同位点,且R1R2R3复合物不能促进花青素合成酶基因转录。为检验假设,研究人员利用基因工程技术向浅红色植株中转入某一基因使其过表达,实验结果如下。
受体植株 | 转入的基因 | 转基因植株叶色 |
浅红色植株(R1R1R2R2R3R3) | R1 | 深红色 |
浅红色植株(R1R1R2R2R3R3) | R2 | 深红色 |
实验结果是否支持上述假设,如果支持请说明理由,如果不支持请提出新的假设 ______________________________。
阅读以下材料回答问题:
染色体外DNA:癌基因的载体
人类DNA通常形成长而扭曲的双螺旋结构,其中大约30亿个碱基对组成了23对染色体,并奇迹般地挤进每个平均直径只有6微米的细胞核中。在真核生物中,正常的DNA被紧紧包裹在蛋白质复合物中。为了读取DNA的遗传指令,细胞依靠酶和复杂的“机械”来切割和移动碎片,一次只能读取一部分,就像是阅读一个半开的卷轴。过去,科学家们大多是依靠基因测序,来研究肿瘤细胞DNA里的癌基因。最近在《Nature》杂志上发表的一篇新研究表明,在人类肿瘤细胞中发现大量如“甜甜圈”般的环状染色体外DNA(ecDNA,如图中黑色箭头所指位置)。科学家们指出,ecDNA是一种特殊的环状结构,看起来有点像细菌里的质粒DNA。这类独立于染色体存在的环状DNA在表达上并不怎么受限,很容易就能启动转录和翻译程序。在人类健康的细胞中几乎看不到ecDNA的痕迹,而在将近一半的人类癌细胞中,都可以观察到它,且其上普遍带有癌基因。ecDNA上的癌基因和染色体DNA上的癌基因都会被转录,从而推动癌症病情的发展。但由于两类癌基因所在的位置不同,发挥的作用也无法等同。
当癌细胞发生分裂时,这些ecDNA被随机分配到子细胞中。这导致某些子代癌细胞中可能有许多ecDNA,细胞中的癌基因也就更多,这样的细胞也会更具危害;而另一些子代癌细胞中可能没有 ecDNA。癌细胞能够熟练地使用ecDNA,启动大量癌基因表达,帮助它们快速生长,并对环境快速做出反应,产生耐药性。研究还发现,ecDNA改变了与癌症相关基因的表达方式,从而促进了癌细胞的侵袭性,并在肿瘤快速变异和抵御威胁(如化疗、放疗和其他治疗)的能力中发挥了关键作用。相比起染色体上的癌基因,ecDNA上的癌基因有更强的力量,推动癌症病情进一步发展。
(1)请写出构成DNA的4种基本结构单位的名称_____________。
(2)真核细胞依靠酶来读取DNA上的遗传指令,此时需要酶的是_______________。(填写以下选项前字母)
a.解旋酶 b.DNA聚合酶 c.DNA连接酶 d.RNA聚合酶
(3)依据所学知识和本文信息,指出人类正常细胞和癌细胞内DNA的异同_________________。
(4)根据文中信息,解释同一个肿瘤细胞群体中,不同细胞携带ecDNA的数量不同的原 因_________。
(5)依据所学知识和本文信息,提出1种治疗癌症的可能的方法___________________。