阅读下面科普短文并回答问题。
基因与环境的“共舞”
生物体的细胞中有一本生命之书——基因组。人的生命源于一个受精卵,初始的全能或多能细胞中的DNA,在转录因子的协同作用下被激活或抑制,让细胞走向不同的“命运”,最终在细胞中表达“一套特定组合”的基因。
生命处于不断变化的环境中,亿万年的进化让生命之书中蕴藏了应对环境变化的强大潜力。细胞中基因的表达始于染色质的解螺旋,各种转录因子结合到DNA上,启动表达。研究发现,这些过程中都存在着调控,这种调控不改变DNA序列,但会对基因进行修饰,从而引起基因表达的变化及表型改变,并且有的改变是可遗传的,即表观遗传。例如DNA上结合一个甲基基团(甲基化),能引起染色质结构、DNA构象的改变,从而改变基因表达。表观遗传提供了基因何时、何处、合成何种RNA及蛋白的指令,从而更精确地控制着基因表达。
表观遗传是个体适应外界环境的机制,在环境变化时,生物可以通过重编程消除原有的表观遗传标记,产生适应新环境的表观遗传标记,这样既适应了环境变化,也避免了DNA反复突变造成的染色体不稳定与遗传信息紊乱。
表观遗传与人的发育和疾病密不可分。胚胎发育早期,建立与子宫内环境相适应的表观遗传修饰是胚胎发育过程的核心任务。母体的饮食、供氧、感染、吸烟等与后代的高血压、II型糖尿病等疾病密切相关。表观遗传改变增加了患有特定疾病的风险,但人体可在相当程度上忍受这些改变而不发病,经历十几年或者几十年的持续压力,表观修饰的弹性被耗尽,细胞或者组织再也无法正常行使功能,从而产生疾病。
生命本质上是物质、能量和信息的统一体,基因与环境的“共舞”,才会奏响生命与环境相适应、协同进化的美妙“乐章”。
(1)基因选择性表达和表观遗传共同作用,使全能或多能细胞走向不同“命运”的过程称为__________。
(2)DNA分子中发生碱基对的替换、增添或缺失,引起的基因碱基序列的改变叫基因突变。表观遗传是否属于基因突变? __________,依据是_____________________。
(3)表观遗传在生物适应外界环境变化中的作用是____________________。
(4)人们用“病来如山倒”形容疾病的发生比较突然。请结合文中内容,用30字内的一句话,作为反驳这种观点的内容:____________________。
科研人员以玉米为实验材料进行遗传与进化方面的研究。请回答问题:
(1)玉米做为实验材料所具备的优点有__________
a.比较常见,属于粮食作物
b.生长速度快,繁殖周期短
c.雌雄异花,便于母本去雄
d.具有易于区分的相对性状
e.子代数目多,有利于获得客观的实验结果
(2)早期玉米种群含油量比较低,研究人员从早期玉米种群开始进行了多代选择:在每一代,研究者从种群中分别选出高含油量和低含油量的个体进行繁殖,从1896年到1986年,经过90代选择后结果如下表。
| 1896年种群 | 1986年高含油量种群 | 1986年低含油量种群 |
含油量 | 4.0% | 20.3% | 0.5% |
①据表可知,经多代选择后,两个种群个体的含油量存在__________。
②该实验结果可知,进化的基本单位是__________,玉米含油量的变化是由于人工选择使__________发生了定向的改变。
③这一实验结果说明适应是__________的结果。
上个世纪60年代,我国科学家鲍文奎通过普通小麦(6n=42)和黑麦(2n=14)培育新的高产黑麦品系。
(1)普通小麦染色体组成可以用AABBDD表示,黑麦的染色体组成可以用MMDD表示,其中一个A表示__________个染色体组,含有__________条染色体。
(2)普通小麦与黑麦杂交,子代为__________倍体,因其无同源染色体,在减数分裂过程中无法___________,不能产生正常配子,导致不育。
(3)用秋水仙素处理(2)中子代幼苗的尖端,可以诱导______,从而获得高产黑麦品系。
(4)推测高产黑麦品系与普通小麦不是同一个物种,依据是______________________。
微RNA(miRNA)是真核生物中广泛存在的一类重要的基因表达调控因子。下图表示线虫细胞中微RNA(lin-4)调控基因lin-14表达的相关作用机制。请回答下列问题:
(1)过程A为___________,①上的四种碱基是__________。
(2)过程B的场所为__________,该过程中能与①发生碱基互补配对的是__________分子。
(3)图中最终形成的②③上氨基酸序列__________(填“相同”或“不同”)。
(4)由图可知,微RNA调控基因lin-14表达的机制是:RISC-miRNA复合物与lin-14mRNA结合,从而抑制__________过程。研究表明,线虫体内不同微RNA仅出现在不同的组织中,说明微RNA基因的表达具有__________性。
小麦的毛颖与光颖是一对相对性状,抗锈病与感锈病是一对相对性状。为研究两对性状遗传规律,研究者将纯合的毛颖抗锈病与光颖感锈病杂交,用F1个体进行实验,结果如下表。
亲本 | 子代不同表现型个体数量(株) | |||
毛颖抗锈病 | 毛颖感锈病 | 光颖抗锈病 | 光颖感锈病 | |
实验一:F1个体自交 | 450 | 149 | 151 | 50 |
实验二F1×光颖感锈病 | 309 | 308 | 305 | 304 |
(1)实验__________结果,说明毛颖和抗锈病都是__________性性状。
(2)F1个体自交,子代性状分离比接近________,推测两对相对性状由两对等位基因控制,两对基因的遗传符合基因的__________定律。
(3)将实验一子代中毛颖抗锈病播种到实验田中,如果全部成活,并让这450株小麦自交,理论上子代不发生性状分离的有__________株。
(4)实验二结果说明F1产生的四种配子比例是__________。
福橘是我国的传统名果,科研人员以航天搭载的福橘茎尖为材料,进行了研究。请回答问题:
(1)福橘茎尖经组织培养后可形成完整的植株,原因是植物细胞具有_________性。此过程发生了细胞的增殖和_________。
(2)为探索航天搭载对细胞有丝分裂的影响,科研人员对组织培养的福橘茎尖细胞进行显微观察。
①制作茎尖临时装片需要经过_________、漂洗、染色和制片等步骤。
②观察时拍摄的两幅显微照片如图。照片a和b中的细胞分别处于有丝分裂的_________期和后期。正常情况下,染色体会先移至细胞中央赤道板附近,之后着丝点分裂,_________分开,两条子染色体移向两极。
③图中箭头所指位置出现了落后的染色体。有丝分裂过程中,染色体在_________的牵引下运动,平均分配到细胞两极,落后染色体的出现很可能是该结构异常导致的。
(3)研究人员发现,变异后的细胞常会出现染色质凝集等现象,最终自动死亡,这种现象称为细胞_________。因此,若要保留更多的变异类型,还需进一步探索适当的方法。