大肠杆菌是寄生于人肠道内的一种细菌,其代谢产物能与染料伊红美蓝反应而使菌落呈紫黑色。测定水样是否符合饮用水的卫生标准,常用滤膜法测定大肠杆菌的总数。滤膜法的大致流程如下图1所示。请回答下列问题:
(1)据题意分析,图中培养基除了加入水、碳源、氮源和无机盐为大肠杆菌生长繁殖提供营养物质外,还需添加_______________和伊红美蓝。
(2)获得纯净培养物的关键是防止外来杂菌入侵,本实验中所使用的培养皿等玻璃器皿的常用灭菌方法有_____________。
(3)在无菌操作条件下,将10 mL待测水样加入到90 mL无菌水中,稀释后的菌液通过滤膜法测得伊红美蓝培养基上的菌落数平均为124个,紫黑色菌落数平均为29个,推测1L待测水样中的大肠杆菌总数约为____________个。
(4)若饮用水中大肠杆菌超标,可引发多种感染。为了研究不同浓度的甲抗生素对A、B两种大肠杆菌的抑菌效果,做如下实验。
I.取稀释后的A、B两种大肠杆菌菌液少许,分别与溶化并冷却至45℃左右的培养基混匀后倒平板各5个;
II.待平板凝固后,在每个平板中央的培养基里各打一个直径为3mm的孔,并在孔中分别加入不同浓度的甲抗生素
III.在适宜条件下培养一段时间,可在孔的周围观察到一圈清晰区,按图2所示测量清晰区的直径,数据如下表。
甲抗生素浓度/µg/mL | 5.0 | 7.5 | 10.0 | 15.0 | 20.0 | |
清晰区直径/mm | A大肠杆菌 | — | 5 | 8 | 13 | 17 |
B大肠杆菌 | 5 | 7 | 9 | 14 | 19 |
①由表1数据可知,甲抗生素对A、B大肠杆菌的增长都有抑制作用,但_______大肠杆菌对甲抗生素敏感性较强。判断依据是_____________。
②为了更准确地说明清晰区的出现是因为甲抗生素的作用,本实验还需增设一组在上述平板孔内加入 _____________作为对照。
③本实验需将上述接种后的平板与_______________在相同条件下培养,以检查培养基灭菌是否合格以及培养过程中是否受到杂菌污染。
某地利用人工湿地处理生活污水,其过程如图1所示,并在上行池中放养了适量的鲤鱼以观察污水处理效果。图2为该人工湿地生态系统中四种生物A-D的能量流动简图。请回答下列问题:
(1)图1中的湿地植物可由图2中的________________(填字母)表示。若从生态系统的成分分析,图2还缺少______________。
(2)图1下行池中水流向下的优点是____________,有利于微生物对污水中有机物的充分分解。
(3)生态学上,通常采用标志重捕法调查鲤鱼的种群密度。用此法调查时,种群密度估计值往往偏高。以下有关原因的分析合理的是_______________。
①被标记个体更易被捕食 ②被标记个体不易被捕捉 ③被标记个体的标记物脱落 ④被标记个体正常死亡
(4)依据图2所示能量数据,计算从第二营养级到第三营养级的能量传递效率为______________。
(5)调查发现,该湿地中某植物可分泌一类特殊的化合物,吸引鸟类捕食害虫,这一现象体现了生态系统的信息传递具有_______________作用。
高山姬鼠是栖息于横断山区的重要小型哺乳动物。研究发现,高山姬鼠在低温胁迫下的适应性生存策略有降低体重和体脂。进一步研究发现,体重和体脂下降与瘦素含量相关。瘦素是由肥胖基因编码的蛋白质类激素,它进入血液循环后会参与糖、脂肪及能量代谢的调节,其调节机制如右图所示。请回答下列问题:
(1)高山姬鼠在低温胁迫下,下丘脑通过分级调节促进________________的分泌活动,直接导致_____________增强,使其在低温条件下的散热__________产热(填“大于”、“小于”、“等于”)。
(2)瘦素合成后,依次由__________ 、______________(填细胞器)加工、分类和包装,并运送到相应靶细胞与特异性受体结合。
(3)在低温胁迫下高山姬鼠体脂下降,体内瘦素的含量____________(填“增加”、“不变”或“减少”),对食欲的抑制作用减弱,从而导致平均摄食量增加,说明脂质代谢平衡的维持离不开激素的_____________调节机制。
(4)脂质代谢的稳定需多种激素共同作用,如胰岛素可通过_____________(填“促进”或“抑制”)脂肪合成,增加肥胖基因的表达和瘦素的合成。
下图1是洋葱根尖分生区细胞分裂(2n=16,细胞周期约为12h)的显微图像,其中①~⑤表示处于细胞周期不同阶段的细胞,图2是细胞周期的检验点示意图,当DNA发生损伤、DNA复制不完全、或纺锤体形成不正常等情况发生时,细胞周期运行将不能通过相应的检验点,使细胞周期被阻断。请回答下列问题:
(1)按细胞分裂的先后,图l中①~⑤的正确排序是_____________(用图中序号和箭头表示),其中细胞①的细胞核内主要完成的生理活动是____________________。
(2)细胞周期检查点是一类负反馈调节机制。当DNA损伤时,细胞将不能通过________________点,被激活的调节机制会及时中断该周期的运行,而损伤被修复后细胞周期将会_______________运转。
(3)若将根尖分生区细胞群置于含适宜浓度秋水仙素的培养液中培养24h,则据图2分 析,该细胞群将停留在______________期的交界处,其原因是秋水仙素会抑制____________的形成。
(4)S期的启动需要一种蛋白质分子作为启动信号,这种蛋白质在S期之前合成并存在于S期全过程中。若将S期和G1期细胞融合,则G1期细胞核进入S期的时间将_________________(填“不变”、“提前”或“延后”)。
下图1为某高等植物叶肉细胞中光合作用和呼吸作用过程示意图(①~⑤表示生理过程,a、b代表相关物质),图2为该植物在CO2浓度适宜的情况下,单位时间内气体的吸收量或消耗量随温度变化的曲线图。请回答下列问题:
(1)图1中,X代表的物质有________________,过程⑤可发生在_____________。
(2)图l所示的过程①可为过程②提供的物质有______________,①~⑤中能产生ATP的生理过程有______________。
(3)由图2可知,该植物达到有机物最大积累量时的最低温度为______________。当处于20-30℃时,影响该植物实际光合作用速率的主要环境因素有________________。
(4)当该植物处于图2中的B点时,图l过程②固定的a和过程⑤消耗的b这两者的数量关系是a______b(填 “大于”、“等于”或“小于”)。
血浆中的胆固醇含量会受到低密度脂蛋白(LDL)的影响。LDL是富含胆固醇的脂蛋白,它的主要功能是将胆固醇转运到肝脏以外的组织细胞(靶细胞)中,以满足这些细胞对胆固醇的需要。下图l是LDL在人体细胞中的主要代谢途径,图2是LDL受体分子结构模式图。请回答下列问题:
(1)人体胆固醇的主要作用除参与血液中脂质的运输外,还参与构成_________________ 。细胞将乙酰CoA合成胆固醇的细胞器是_________________。
(2)与生物膜相比,LDL膜结构的不同点是_______________。LDL能够将包裹的胆固醇准确转运至靶细胞中,这与其结构中的____________________和靶细胞膜上的LDL受体结合直接相关。
(3) LDL通过途径①______________方式进入靶细胞,该过程需要靶细胞膜上的网格蛋白和________________等物质的参与。
(4)由图2可知,LDL受体的化学本质是________________。若体内严重缺乏LDL受体会导致高胆固醇血症,原因是LDL携带的胆固醇_____________。