如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,
且,.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
如图,五面体中,.底面是正三角形,.四边形是矩形,二面角 为直二面角.
(1)在上运动,当在何处时,有∥平面,并且说明理由;
(2)当∥平面时,求二面角的余弦值.
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率
(2)该顾客获得的奖品总价值(元)的概率分布列和数学期望。
设向量,向量,.
(1)若向量,求的值;
(2)求的最大值及此时的值.
如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第n行(n≥2)中第2个数是____ ____(用n表示).
对a,b∈R,记max| a,b |= ,函数f(x)=max| | x+1 |,| x-2 | | (x∈R)的最小值是 .