当时,函数的值域是( )
A. B.
C. D.
“”是“直线和直线,互相垂直”的( )
A.充分不必要 B.必要不充分 C.充要 D.不充分不必要
已知椭圆E中心在原点O,焦点在x轴上,其离心率e=,过点C(-1,0)的直线l与椭圆E相交于A、B两点,且满足.
(Ⅰ)用直线l的斜率k(k≠0)表示△OAB的面积;
(Ⅱ)当△OAB的面积最大时,求椭圆E的方程.
已知椭圆4x2+y2=1及直线l:y=x+m.
(Ⅰ)当m为何值时,直线l与椭圆有公共点?
(Ⅱ)若直线l被椭圆截得的线段长为,求直线的方程.
(Ⅲ)若直线l与椭圆相交于A、B两点,是否存在m的值,使得?若存在,求出m的值;若不存在,说明理由.
一台机器由于使用时间较长,生产的零件有一些会有缺损.按不同转速生产出来的零件有缺损的统计数据如下:
转速x(转/s) |
18 |
16 |
14 |
12 |
每小时生产有缺损零件数y(件) |
11 |
9 |
7 |
5 |
(Ⅰ)作出散点图;
(Ⅱ)如果y与x线性相关,求出回归方程;
(Ⅲ)如果实际生产中,允许每小时的产品中有缺损的零件最多为8个,那么机器运转
速度应控制在什么范围内?
用最小二乘法求线性回归方程的系数公式:
已知p:函数y=x2+mx+1在(-1,+∞)上单调递增,q:函数y=4x2+4(m-2)x+1大于0恒成立.若p∨q为真,p∧q为假,求m的取值范围.