某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆元的保险金,对在一年内发生此种事故的每辆汽车,单位可获元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为,,,且各车是否发生事故相互独立,求一年内该单位在此保险中:
(Ⅰ)获赔的概率;
(Ⅱ)获赔金额的分布列与期望.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据.
|
|
|
|
|
|
|
|
|
|
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:)
某计算机程序每运行一次都随机出现一个二进制的六位数,其中 的各位数中,,(2,3,4,5)出现0的概率为,出现1的概率为,记,当该计算机程序运行一次时,求随机变量的分布列和数学期望。
.如图,把一块边长是的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转作成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?
已知是正整数,在中的系数为.
(1)求的展开式,的系数的最小值;
(2)当的展开式中的系数为时,求的系数.
从四男三女中选出一部分人,组成一个有男有女的小组,规定小组中男的数目为偶数,女的数目为奇数,不同的组织方法共有多少种?